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Computerized adaptive testing (CAT) reduces cognitive fatigue and response burden 

while maintaining measurement precision by administering items tailored to the 
respondent. However, the assumptions of item response theory models—commonly used in 
CAT—might be too stringent for some tests. This study investigated the bias and 
accuracy of a flexible CAT procedure, called LSCAT (for latent-class sum-score CAT). 
In the calibration phase, an unrestricted latent class model estimates the joint item-score 
density (𝛑𝛑) and the total-score density (𝛑𝛑+); in the operational phase, the respondents’ 
expected total scores are estimated. The paper’s first study indicated that using the 
Bayesian information criterion (BIC) to determine the number of latent classes produced 
the most accurate estimates of 𝛑𝛑 and 𝛑𝛑+. The second study showed that the unrestricted 
latent class model more accurately estimated 𝛑𝛑 and 𝛑𝛑+ than the two-parameter logistic 
model, especially under a complex data-generating mechanism. As a proof of concept, the 
third study compared the precision of LSCAT and a traditional CAT procedure using the 
two-parameter logistic model with a single empirical dataset. The two CAT procedures 
were approximately equally precise. Although the two procedures had the same fixed 
efficiency, LSCAT was more efficient for the high- and low-scoring respondents, while 
traditional CAT was more efficient for respondents in the middle. 
Keywords: CAT simulation, computerized adaptive testing, density-estimation, item-
calibration, latent class analysis, model selection. 

 
In computerized adaptive testing (CAT; e.g., Van der Linden & Glas, 2010; Wainer & 

Dorans, 2000) the items are selected based on the examinee’s responses to previous items: Less 
able examinees are presented with easier questions, whereas more able examinees are presented 
with more difficult items (Eggen & Verschoor, 2006; Wainer & Dorans, 2000). CAT is used to 
measure an examinee’s ability in various domains and is often linked to distal outcomes. For 
example, in healthcare CAT is used to measure patient-reported outcomes (e.g., Choi et al., 
2010; Flens et al., 2017) and predict physical, mental, and social health (Gibbons et al., 2012). 
In education, CAT is used for university admission, for example, and predicts future educational 
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achievement (e.g., Conrad, 1977; Kuncel et al., 2001). By using CAT, more precise results are 
acquired in less time resulting in more efficient assessments (e.g., Weiss, 2004). 

Over the past few decades, significant progress has been made in CAT techniques, from the 
earliest methods (Clark, 1976; Lord, 1969) to more recent developments (Magis et al., 2017; 
von Davier, Mislevy, et al., 2021). Traditionally, examiners often aim to measure a specific 
ability trait (Wainer & Dorans, 2000), which is why the construction of a CAT often relies on 
unidimensional item response theory (IRT) models (Van der Linden, 2018; Van der Linden & 
Glas, 2010). When the construct being measured comprises multiple non-orthogonal traits, 
multidimensional CATs can be constructed (Chalmers, 2012, 2016; Segall, 1996) using 
multidimensional IRT models (Reckase, 2009). 

Despite the widespread use of IRT methods, other non-IRT alternatives have also been 
developed to accommodate tests that do not satisfy the statistical assumptions of IRT models. 
Van Buuren and Eggen (2017) introduced CAT employing an unrestricted latent class model 
(ULCM) to assign respondents to proficiency categories of a nominal latent variable. By means 
of cognitive diagnosis models (see von Davier & Lee, 2019, for an overview), cognitive 
diagnostic CAT (CD-CAT; e.g., Cheng, 2009; Sorrel et al., 2021) is used to assign respondents 
to attribute profiles, which are also categories of a nominal latent variable. Other non-IRT 
alternatives include the use of decision trees to overcome the absence of unidimensionality (Yan 
et al., 2004) or local independence assumptions (Ueno & Songmuang, 2010). Such more 
advanced CAT applications are needed not just to go beyond restricted statistical models but 
also to integrate techniques from advanced computing methods and incorporate a wide variety of 
input data in order to stay current with technological developments (Veldkamp, 2022; von 
Davier, Di Cerbo, et al., 2021). 

Van der Ark and Smits (2023) proposed a framework for CAT, which they coined FlexCAT, 
consisting of two main components: the engine and the score. The engine refers to the model 
used to estimate the joint item-score density (i.e., a vector containing the probabilities for 
observing each item-response pattern), denoted as 𝛑𝛑. For example, three dichotomous items 
result in the following eight response patterns (i.e., 000, 001, 010, 011, 100, 101, 110 and 111). 
If in the population, all respondents would respond randomly with probability 0.5, then all 
response patterns would be equally likely, and 𝛑𝛑 = (.125, .125, .125, .125, .125, .125, .125,
.125)T. The score refers to the variable used to communicate the measurement value of the 
respondent. For instance, within the FlexCAT framework, for IRT-based CAT the engine is an 
IRT model (for instance, a two-parameter logistic model; 2PLM) from which estimates of 𝛑𝛑 can 
be derived, and the score is the estimated latent trait value (θ). In ULCM-based CAT proposed 
by Van Buuren and Eggen (2017), the engine is a ULCM and the score is the respondent’s 
estimated latent class membership. In most CAT applications, the score constitutes a part of the 
engine, which is computationally efficient and might be intuitively appealing. For example, in 
IRT-CAT, direct estimation of the joint item-score density, 𝛑𝛑, can be circumvented because the 
IRT model also produces estimates of scores. Note that an estimate of 𝛑𝛑 can be derived from 
the item-parameter estimates, in combination with the assumed distribution of the latent trait, θ. 
Within the FlexCAT framework, the engine and score may be independent, providing more 
flexibility in choosing the score of interest. For example, in decision-tree-based CAT (Ueno & 
Songmuang, 2010; Yan et al., 1998, 2004), the engine is the decision tree and the score is the 
expected total score of the respondent. 

In this paper, the focus is on FlexCAT with the ULCM as an engine, along with both the 
item-response pattern for scores and the (unweighted) total score, hence denoted as LRCAT and 
LSCAT respectively. For some CAT applications, the ULCM can be an attractive engine 
because of its flexibility compared to other latent variable models. The ULCM assumes only 
local independence of the item scores given latent class membership (e.g., Vermunt & 
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Magidson, 2004, pp. 2-3), putting relatively few constraints on the data, resulting in a relatively 
good model fit. Thus, the ULCM might be an attractive engine if the data are not consistent 
with an IRT model. Van der Ark and Smits (2023) discussed several other reasons why the 
ULCM is an attractive engine. 

First, using the ULCM also allows CAT for prediction purposes, both with an internal criter-
ion (e.g., “Does the respondent belong to the 3% highest scoring respondents?”) and an external 
criterion (e.g., “Will the respondent fall back into criminal behavior?”) because a ULCM can 
model items and internal and external criteria simultaneously. 

Second, the ULCM is able to handle tests and questionnaires that contain items with differ-
ent numbers of response categories. Areas where these questionnaires are commonly used include 
mental care (e.g., Jelínek et al., 2021), youth care (e.g., Ebesutani et al., 2011), and quality of 
life research (e.g., Kim, 2014). 

In traditional applications of the ULCM (e.g., Hagenaars & McCutcheon, 2002), the selec-
ted number of latent classes is limited, say 2 to 6, to facilitate the interpretation of the latent 
classes. Van Buuren and Eggen (2017) also constructed their ULCM-based CAT using a 
limited number of latent classes, a plausible approach in their case since these latent classes were 
also used as scores, necessitating a clear interpretation. The ULCM is used here differently, as a 
density estimator (e.g., Linzer, 2011; Vermunt et al., 2008): Its sole purpose is to estimate 𝛑𝛑 as 
accurately as possible. Contrasting the ULCM for density estimation with traditional latent 
class analysis, Vermunt et al. (2008) identified four aspects of using the ULCM as a density 
estimator. First, the latent classes need not be interpreted, suggesting that for density estimation 
the number of latent classes is determined by the fit of 𝛑𝛑, not by substantive concerns. Second, 
in density estimation, overfitting is less problematic than underfitting. This suggests that when 
in doubt about the number of latent classes needed for a good model fit, the more flexible model 
might be preferred. Third, identifiability issues are of no concern for density estimation. Finally, 
local optima—which are difficult to avoid with a larger number of latent classes—typically yield 
ULCM parameter estimates that result in estimates of 𝛑𝛑 nearly as good as those based on the 
global maximum. Van der Palm et al. (2016b) showed that a hierarchical version of the ULCM 
could effectively detect higher-order effects in multivariate discrete densities. Other applications 
where a ULCM has been used as a density estimator include smoothing large contingency tables 
(Linzer & Lewis, 2011), imputing missing data (Van der Palm et al., 2016a), and estimating 
test-score reliability (Van der Ark et al., 2011). 

Both the total score and the item-response pattern are considered to be reasonable choices 
for a score. The total score is of interest because it is still used in many psychological and educa-
tional tests. Similarly, the item-response pattern is a relevant choice since it is the foundation of 
most scores, including the latent trait θ used in IRT. If the engine is the ULCM, then the 𝜃𝜃—the 
standard score in CAT—is not an obvious choice for a score. The ULCM can provide an 
estimate of 𝛑𝛑, but then an IRT model would be required to estimate 𝜃𝜃 from 𝛑𝛑� It can be expected 
that estimating 𝜃𝜃 directly from the observed data or estimating 𝜃𝜃 from the smoothed data in 𝛑𝛑� 
would provide very similar estimates. 

The primary objective of this article was to evaluate the accuracy of the ULCM as a density 
estimator of 𝛑𝛑 and 𝛑𝛑+ when discrete item scores are used; inaccurate estimates could distort 
individual measurement and prediction. In the next sections, after discussing the ULCM and 
ULCM model fit, three simulation studies are presented addressing three specific research 
questions. Study 1 addressed the question of how the number of latent classes in the ULCM 
should be selected to obtain the most accurate estimate of 𝛑𝛑 and 𝛑𝛑+. Study 2 addressed the 
question of whether the ULCM can provide accurate estimates of 𝛑𝛑 and 𝛑𝛑+ when the data-
generating process is complex due to higher-order interactions among the item scores. Whereas 
such complexity might not be typical for practical CAT applications, the ability of ULCM to 
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provide an accurate estimate of any 𝛑𝛑 can be considered an asset of the method. Finally, in 
Study 3, LSCAT was employed in practice using CAT simulations with empirical data. 
Additionally, an IRT-CAT simulation was conducted with the 2PLM as an engine and θ as the 
score using the same data. The outcome of Study 3 demonstrated how both CAT methods 
performed in comparison to a full-item test. 

 
The Unrestricted Latent Class Model for Density Estimation 

 
The ULCM 

 
Before discussing the utility of the ULCM as a density estimation tool and the challenges 

of ULCM fit, some relevant notation is needed to aid understanding of the approach used in this 
paper. Assume that a test contains 𝐽𝐽 items, each with 𝑚𝑚 + 1 ordered response categories 
(0, 1, … ,𝑚𝑚). If 𝑚𝑚 = 1, the items are dichotomously scored, whereas if 𝑚𝑚 > 1, the items are 
polytomously scored. Let 𝑌𝑌𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) be a random variable denoting the score on item 𝑗𝑗, 
and let 𝑦𝑦𝑗𝑗 be the realization of 𝑌𝑌𝑗𝑗. Let 𝐘𝐘 = �𝑌𝑌1, … ,𝑌𝑌𝐽𝐽�

𝖳𝖳
 be a multivariate random variable 

containing all item scores, which is referred to as the item-response pattern, with realization 
𝐲𝐲 = �𝑦𝑦1, … ,𝑦𝑦𝐽𝐽�

𝖳𝖳
. As each of the 𝐽𝐽 items has 𝑚𝑚 + 1 categories, the total number of values 𝐲𝐲 is 

able to take equals 𝐿𝐿 = (𝑚𝑚 + 1)𝐽𝐽, ranging from 𝐲𝐲 = (0,0, … ,0)𝖳𝖳 to 𝐲𝐲 = (𝑚𝑚,𝑚𝑚, … ,𝑚𝑚)𝖳𝖳. Let 
𝑌𝑌+ = ∑ 𝑋𝑋𝑗𝑗𝑗𝑗  be a random variable denoting the total score—i.e., the sum of the item scores—
with realization 𝑦𝑦+; 𝑦𝑦+ can take 𝐿𝐿+ = 𝑚𝑚𝑚𝑚 + 1 values ranging from 𝑦𝑦+ = 0 to 𝑦𝑦+ = 𝑚𝑚𝑚𝑚. For 
simplicity of notation, the probabilities of observing a certain item-response pattern, 𝑃𝑃(𝐘𝐘 = 𝐲𝐲), 
are collected in the 𝐿𝐿 × 1 vector 𝛑𝛑, whereas the probabilities of observing a certain total score, 
𝑃𝑃(𝑌𝑌+ = 𝑦𝑦+), are collected in the 𝐿𝐿+ × 1 vector 𝛑𝛑+. Let 𝐐𝐐 be an appropriate 𝐿𝐿 × 𝐿𝐿+ design 
matrix in which 𝑞𝑞𝑟𝑟𝑟𝑟 = 1 if item-response pattern 𝐲𝐲𝑟𝑟 sums to the total score 𝑠𝑠, and 𝑞𝑞𝑟𝑟𝑟𝑟 = 0, 
otherwise. Then 𝛑𝛑 and 𝛑𝛑+ are related by 

 
𝛑𝛑+ = 𝐐𝐐𝖳𝖳𝛑𝛑. (1) 
 

Under the ULCM, it is assumed that a latent variable Ξ with 𝒦𝒦 discrete categories 
(1, … ,𝒦𝒦)—usually referred to as latent classes—explains all the associations in the data. Let 
𝑃𝑃(Ξ = ξ) denote the probability that a randomly selected respondent belongs to latent class 
(ξ = 1, … ,𝒦𝒦), also known as the class weight. Furthermore, let 𝑃𝑃(𝐘𝐘 = 𝐲𝐲|Ξ = ξ) denote the 
conditional probability of obtaining item-response pattern 𝐲𝐲 given that the respondent belongs 
to latent class ξ, also referred to as the response probability. The conditional independence 
assumption in the ULCM states that item scores depend only on class membership, which means 
that 

 
𝑃𝑃(𝐘𝐘 = 𝐲𝐲|Ξ = ξ) = ∏ �𝑌𝑌𝑗𝑗 = 𝑦𝑦𝑗𝑗|Ξ = ξ�𝑗𝑗 . (2) 

 
Hence, under the ULCM, the probability that a randomly selected respondent obtains item-
response pattern 𝐲𝐲 equals 

 

𝑃𝑃(𝐘𝐘 = 𝐲𝐲) = ∑ 𝑃𝑃ξ (Ξ = ξ) × ∏ 𝑃𝑃�𝑌𝑌𝑗𝑗 = 𝑦𝑦𝑗𝑗|Ξ = ξ�𝑗𝑗 . (3) 
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Vector 𝛑𝛑 can be derived from Equation 3, and 𝛑𝛑+ can be computed from 𝛑𝛑 using Equation 1. 
The matter at issue is whether the ULCM can accurately estimate 𝛑𝛑 and 𝛑𝛑+. 

 
ULCM Fit and Selection 

 
An important issue is the selection of the number of latent classes. Let ULCM(𝐾𝐾) denote 

the estimated ULCM with 𝐾𝐾 latent classes. Global goodness-of-fit tests for contingency tables, 
such as the likelihood ratio test or Pearson’s chi-square test, are seldom used to select the num-
ber of latent classes. Comparing the fit of ULCM(𝐾𝐾) to the data (i.e., the saturated model) 
requires a sufficiently large sample size for each probability in 𝛑𝛑 (Koehler & Larntz, 1980). 
Because the size of 𝛑𝛑 increases exponentially as the number of items increases, these tests are 
only useful for very small item sets. For variants of these tests that compare the fit of ULCM(𝐾𝐾) 
to ULCM(𝐾𝐾+1), the regularity conditions required to ensure that the test statistic follows a chi-
square distribution, do not apply (Chen et al., 2020; Holt & Macready, 1989; Vermunt & 
Magidson, 2004). This renders these tests useless resulting in biased 𝑝𝑝-values. Resampling 
techniques might be implemented to estimate the distribution of the test statistic or 
combinations of local fit statistics might be inspected, such as the bivariate residual (Vermunt & 
Magidson, 2004). These methods can be time consuming, particularly when dealing with exten-
sive models intended for CAT. 

More popular is the use of information criteria, statistics that balance model fit and model 
complexity, and sometimes sample size. For instance, the Akaike Information Criterion (AIC; 
Akaike, 1998) can be written as the likelihood ratio test statistic minus the number of model 
parameters. For 𝐾𝐾 = 1, 2, … the information criterion of ULCM(𝐾𝐾) is computed. The number 
of latent classes that produces the lowest information-criterion value, denoted 𝐾𝐾*, is selected as 
the best estimate of the true number of latent classes, 𝒦𝒦. As the fit of the ULCM solely depends 
on the number of latent classes, information criteria might be useful tools for selecting the best-
fitting model. In addition to AIC, popular information criteria include the consistent AIC 
(CAIC; Bozdogan, 1987), AIC3, (Bozdogan, 1993) as well as information criteria that are 
derived from Bayes factors, such as the Bayesian information criterion (BIC; Schwarz, 1978) 
and the adjusted BIC (aBIC; Sclove, 1987). Nylund et al. 2007 found that aBIC generally 
outperforms AIC and BIC, and Lukočienė and Vermunt (2010) observed a similar trend with 
AIC3 outperforming AIC and BIC. However, the performance depends on factors such as sample 
size and number of items (Whittaker & Miller, 2021). For instance, BIC and aBIC tend to 
perform well with large samples, whereas AIC, CAIC, and AIC3 tend to perform better in 
smaller sample sizes (Morgan, 2015; Nylund et al., 2007). 

The cited studies comparing the performance of information criteria did not account for the 
specific conditions that apply to CAT: Large samples and many items, which require a large 
number of latent classes. Sample sizes in the cited studies varied from 200 to 1,200, and the 
number of items typically ranged between eight and ten, never exceeding 15. The most common 
choice for the true number of latent classes, denoted by 𝒦𝒦, was three and never exceeded eight. 

 
Study 1 

 
The aim of Study 1 was to determine the conditions under which the joint densities of the 

item-scores (𝛑𝛑) and the total score (𝛑𝛑+) can be accurately estimated. The 𝛑𝛑 and 𝛑𝛑+ estimates, 
denoted by 𝛑𝛑� and 𝛑𝛑�+, depend on the chosen information criterion which in turn depends on 
specific factors, namely the sample size, the number of items, and the true number of classes. 
Inaccurate estimates could distort individual measurement and prediction when used in 
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LSCAT. Thus, a simulation study was necessary to determine the conditions under which 𝛑𝛑 
and 𝛑𝛑+ can be used with confidence. 

 
Method 

 
Data generation. Data were generated from population models. A population model was 

derived by estimating a ULCM(𝐾𝐾) with the dichotomous scores of 1,407 students to 𝑱𝑱 items of 
the Czech Medical School Admission Test (MSAT-B; see Drabinová and Martinková, 2017, for 
an overview). The ULCM-parameter estimates were used as population values, from which 𝛑𝛑 was 
computed using Equation 3, and 𝛑𝛑+ using Equation 1. Data were generated by a sample of size 
𝑁𝑁 from the model. 

Independent variables. Three between-subject independent variables were included.  

1. Sample size, 𝑁𝑁, had three levels: 250; 1,000; and 2,000. 𝑁𝑁 = 2, 000 mimics realistic 
conditions for CAT calibration, 𝑁𝑁 = 250 serves as a minimum requirement for precise 
pre-test IRT calibration (Şahin & Weiss, 2015), and 𝑁𝑁 = 1, 000 as a plausible value in 
between.  

2. The number of items, 𝐽𝐽, had two levels: 9 and 18. 𝐽𝐽 = 18 approximates the compu-
tational limitation for estimating all 2𝐽𝐽 elements of 𝛑𝛑, and 𝐽𝐽 = 9 is similar to values 
used in the existing literature on ULCM fit.  

3. Number of latent classes in the population, 𝒦𝒦, had three levels: 4, 8, and 12. 𝒦𝒦 =  4 
is close to values typically used in the literature on investigating ULCM model fit, 𝒦𝒦 =
 8 is the highest value used in the literature, and 𝒦𝒦 =  12 represents a very complex 
model.  

Information criterion, the only within-subject independent variable, had four levels: AIC, AIC3, 
BIC, and aBIC, representing four of the more popular information criteria. 

Dependent variables. There were two dependent variables, corresponding to the accuracy 
with which 𝛑𝛑 and 𝛑𝛑+, respectively, were estimated. The Kullback-Leibler divergence (KL; 
Kullback & Leibler, 1951) was used to assess the difference between the estimated densities 𝛑𝛑� 
and 𝛑𝛑�+, and the population probability densities 𝛑𝛑 and 𝛑𝛑+. KL(𝛑𝛑||𝛑𝛑�)  is the logarithmic 
difference between the probabilities of the true density 𝛑𝛑 and the estimated density 𝛑𝛑�,  and is 
defined as 

 

KL(𝛑𝛑||𝛑𝛑�) =  ∑𝛑𝛑 × log2 �
𝛑𝛑
𝛑𝛑�
� = 𝐻𝐻(𝛑𝛑,𝛑𝛑�) − 𝐻𝐻(𝛑𝛑) (4) 

 
where 𝐻𝐻(𝛑𝛑,𝛑𝛑�) is the cross-entropy between 𝛑𝛑 and 𝛑𝛑� ,  and 𝐻𝐻(𝛑𝛑) is the entropy of 𝛑𝛑. KL ranges 
from 0 to infinity, with higher values indicating greater information loss when approximating 𝛑𝛑 
with 𝛑𝛑�.  Thus, larger values of KL are less favorable. 

Dependent variables KL(𝛑𝛑||𝛑𝛑�) and KL(𝛑𝛑+||𝛑𝛑�+) were computed as follows. For 𝐾𝐾 =
 1, 2, … ,𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , the information criterion of ULCM(𝐾𝐾) was computed, where 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  denotes 
the number of latent classes for which, according to the information criterion, the model fit had 
not improved for three consecutive values of 𝐾𝐾. Hence, the best fitting model is ULCM(𝐾𝐾∗) =
 ULCM(𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  − 3). Then,  𝛑𝛑� and 𝛑𝛑�+ were computed from ULCM(𝐾𝐾∗) using Equations 3 and 
1. Note that 𝛑𝛑 and 𝛑𝛑+ had already been calculated from the population model ULCM(𝒦𝒦). 
Finally, KL(𝛑𝛑||𝛑𝛑�) and KL(𝛑𝛑+||𝛑𝛑�+) were computed using Equation 4. 

Running the simulation. A full factorial design was conducted containing 𝟑𝟑 (𝑵𝑵)  ×  𝟐𝟐 (𝑱𝑱)  ×
 𝟑𝟑 (𝑲𝑲)  ×  𝟒𝟒 (information criterion) =  𝟕𝟕𝟕𝟕 conditions, each with 100 replications. The package 
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POLCA (Linzer & Lewis, 2011) in R (R Core Team, 2023) was used for model estimation. All 
other computations were done in personal R code available from OSF.  

 
Results 

 
The results from Study 1 are presented separately for 𝛑𝛑 and 𝛑𝛑+. A notable shared obser-

vation was that, in both scenarios, as the sample size increased, the accuracy of estimating both 
𝛑𝛑 and 𝛑𝛑+ improved across all information criteria. Moreover, it is worth noting that no non-
convergence problems were encountered during the estimation process of the LCMs. However, in 
2.33% of the cases, the divergence between 𝛑𝛑 and 𝛑𝛑� was so large that the KL(𝛑𝛑||𝛑𝛑�) tended to 
infinity. 

Accuracy of 𝝅𝝅� . Based on the results in Table 1, except for two conditions with 𝑵𝑵 = 𝟐𝟐,𝟎𝟎𝟎𝟎𝟎𝟎, 
and 𝑱𝑱 = 𝟏𝟏𝟏𝟏, where aBIC was the best performing information criterion, BIC was the most 
accurate information criterion in all conditions. In addition, as the sample size increased the 
differences among information criteria in the accuracy of 𝝅𝝅� became smaller. Appendix A 
provides more detailed results regarding the distribution of the 𝑲𝑲𝑲𝑲 values for each condition. 

Accuracy of 𝛑𝛑�+. Within each condition, the median values of KL(𝛑𝛑+||𝛑𝛑�+) did not differ 
substantially across information criteria (Table 2). Differences among the median values were 
evident at the fourth decimal place, indicating that the investigated information criteria 
performed equally well.  

Since the differences in the median values were negligible, the differences of 𝛑𝛑+ and 𝛑𝛑�+ were 
inspected at a finer-grained level (Figure 1). The black dotted curve represents the true total-
score density 𝛑𝛑+ for 𝐽𝐽 =  18, under nine different conditions. The blue area represents the 100 
curves of the estimated total-score density  𝛑𝛑�+under the information criterion that yielded the 
smallest median KL value per condition (i.e., best scenario). In contrast, the red area represents 
the 100 curves of 𝛑𝛑�+ under the information criterion that yielded the largest median KL value 
(i.e., worst scenario). Figure 1 shows that as the sample size increased, both the worst and best 
scenarios were very close since the areas overlapped. 

Figure 1 
An Illustrated Example of the Actual Differences  

of 𝛑𝛑+ and 𝛑𝛑�+ in the Best and Worst Scenarios 

https://osf.io/fc9ge
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Table 1. Median Kullback-Leibler Divergence of 𝛑𝛑 and 𝛑𝛑� Across 100 Replications 
Simulation conditions                                               Information criterion 

𝑁𝑁  𝐉𝐉 𝒦𝒦  AIC BIC AIC3 aBIC 

250 9 4  1.4241 0.6768 0.7352 0.8336 
  8  1.5078 0.5691 0.8640 0.7185 
  12  1.1299 0.4646 0.5225 0.9410 
 18 4  0.8853 0.3373 0.4117 0.5970 
  8  1.3556 0.4053 0.4984 0.5712 
  12  2.2988 0.4788 0.5025 1.3766 
1000 9 4  0.0555 0.0349 0.0507 0.0429 
  8  0.2075 0.0501 0.0918 0.0614 
  12  0.3044 0.0685 0.0854 0.0797 
 18 4  0.1066 0.0784 0.0904 0.0891 
  8  0.1828 0.1208 0.1393 0.1309 
  12  0.3494 0.1745 0.2004 0.1790 
2000 9 4  0.0248 0.0182 0.0223 0.0226 
  8  0.1409 0.0303 0.0595 0.0445 
  12  0.1990 0.0503 0.0567 0.0514 
 18 4  0.0514 0.0385 0.0451 0.0442 
  8  0.0923 0.0642 0.0696 0.0591 
  12  0.1373 0.1241 0.1042 0.0972 

Note. The values represent the median Kullback-Leibler divergence between the true and estimated 𝛑𝛑 in a 
distribution of 100 replications. The smaller median per condition (i.e., per row) is denoted in bold.  

 
Conclusions 

 
Study 1 demonstrated that, in general, BIC outperformed other information criteria for finding the 

ULCM that resulted in the most accurate estimate of 𝛑𝛑. In contrast, all competing information criteria 
(AIC, AIC3, BIC, aBIC) performed equally well in selecting the model that yielded the most accurate 
estimate of 𝛑𝛑+. In this study, the ULCM served as the data-generating mechanism for all 
conditions. The question that arose at this point was how well the ULCM could estimate the 
densities of 𝛑𝛑 and 𝛑𝛑+ under different data-generating mechanisms. 

Study 2 
 

Study 2 investigated whether the ULCM could accurately estimate 𝛑𝛑 and 𝛑𝛑+ even under a 
complex data-generating mechanism that included higher-order interaction effects. In addition to 
a complex data-generating model, described below, the ULCM and the 2PLM were also included, 
as benchmarks, as data-generating models. It was hypothesized that the ULCM engine would 
work best when the data were also generated under a ULCM, and the 2PLM engine would work 
best when the data were also generated under a 2PLM. It was expected that under the complex 
data-generating mechanism, the ULCM engine would outperform the 2PLM engine, because the 
ULCM has less restrictive assumptions than the 2PLM. 
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Table 2. Median Kullback-Leibler Divergence 
 of  𝛑𝛑+ and 𝛑𝛑�+ .     Across 100 Replications 

Simulation conditions                                                          Information criterion 
𝑁𝑁  𝐉𝐉   𝒦𝒦  AIC BIC AIC3 aBIC 

250 9 4  0.0108 0.0105 0.0099 0.0101 
  8  0.0103 0.0102 0.0099 0.0101 
  12  0.0104 0.0107 0.0102 0.0105 
 18 4  0.0145 0.0156 0.0174 0.0166 
  8  0.0149 0.0189 0.0167 0.0185 
  12  0.0180 0.0195 0.0199 0.0205 
1000 9 4  0.0022 0.0019 0.0021 0.0022 
  8  0.0024 0.0021 0.0024 0.0024 
  12  0.0026 0.0032 0.0030 0.0032 
 18 4  0.0029 0.0028 0.0026 0.0028 
  8  0.0037 0.0050 0.0039 0.0039 
  12  0.0038 0.0067 0.0043 0.0054 
2000 9 4  0.0013 0.0012 0.0012 0.0012 
  8  0.0011 0.0011 0.0012 0.0010 
  12  0.0014 0.0017 0.0015 0.0017 
 18 4  0.0013 0.0012 0.0012 0.0013 
  8  0.0013 0.0016 0.0013 0.0014 
  12  0.0014 0.0036 0.0013 0.0015 

Note: The values represent the median Kullback-Leibler divergence between the true and estimated 𝛑𝛑+ in a 
distribution of 100 replications. The smaller median per condition (i.e., per row) is denoted in bold.  
 
Method 
 

Data generation. Scores for 𝑁𝑁 respondents on 9 dichotomous items were generated using 
three data-generating models: a 2PLM, a ULCM(𝒦𝒦 = 2), and a loglinear model that included 
fifth-order interactions among the item scores (cf. Van der Palm et al., 2016a, who also used a 
loglinear model for a complex data-generating model). The parameters from the 2PLM were 
obtained by estimating a 2PLM on the MSAT-B data (see Study 1), and subsequently using the 
estimated item parameters as the population item-parameters and the estimated θ values as the 
population θ values in the data-generating model. Then 𝛑𝛑 was computed from the data-
generating model, and item response patterns were sampled from 𝛑𝛑. Similarly, the parameters 
of the ULCM(2) were obtained by estimating a ULCM(2) on the MSAT-B data, and subse-
quently using the estimated parameters as the parameters in the data-generating model. As for 
the 2PLM, 𝛑𝛑 was computed from the data-generating model, and item response patterns were 
sampled from 𝛑𝛑. For the loglinear model, let 𝜆𝜆0 be the intercept, 𝜆𝜆𝑖𝑖 (𝑖𝑖 = 1, … ,9) be the 
parameters for the first-order effects, 𝜆𝜆𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗 = 1, … ,9; 𝑖𝑖 ≠ 𝑗𝑗) be the parameters for the second-
order effects, 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1, … ,9; 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘) be the parameters for the third-order effects, 
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙 = 1, … ,9; 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘 ≠ 𝑙𝑙) be the parameters for the fourth-order effects, and  
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙,𝑚𝑚 = 1, … ,9; 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘 ≠ 𝑙𝑙 ≠ 𝑚𝑚) be the parameters for the fifth-order effects. 
The data-generating model was 
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(5) 

As for the previous two data-generating models, 𝛑𝛑 was computed from the data-generating 
model, and item response patterns were sampled from 𝛑𝛑. Appendix B shows the parameter values 
of the three data-generating models. 

Independent variables. The only within-subject independent variable, Engine, had two 
levels: “2PLM” as a representative of traditional CAT and “ULCM” as a representative of 
LSCAT. Study 2 had two between-subject independent variables. Data-generating model had 
three levels: “2PLM”, “ULCM(2)”, and loglinear model (see previous subsection). Scenario had 
two levels: Scenario 1, in which for each level of data-generating model 𝑁𝑁 = 100,000 item 
response patterns were sampled without replications, and Scenario 2, in which 𝑁𝑁 =  5,000 item 
response patterns were sampled in 50 replications. In Scenario 1, due to the large sample size, 
there was very little sampling error affecting the outcomes, rendering replications unnecessary. 
The results may be interpreted in terms of bias. In Scenario 2, sampling error can also be studied. 

Dependent variables. As in Study 1, KL(𝛑𝛑||𝛑𝛑�) and KL(𝛑𝛑+||𝛑𝛑�+) were the dependent 
variables. It was hypothesized that under the 2PLM data-generating model, the 2PLM engine 
would produce the lowest KL divergence, that under the ULCM(2) data-generation model, the 
ULCM engine would produce the lowest KL divergence, and that under the loglinear data-
generating model, both engines would be less accurate, but the ULCM engine would produce 
the lowest KL divergence as the ULCM is less restrictive than the 2PLM. 

Running the simulation. A full factorial design was conducted with 3 (data-generating model) 
× 2 (engine) × 2 (scenario) = 12 conditions; 6 conditions without replications (Scenario 1) and 
6 with 50 replications (Scenario 2). The R package MIRT (Chalmers, 2012) was used to estimate 
the 2PLM and, as in Study 1, the POLCA package (Linzer & Lewis, 2011) for ULCM estimation. 
All other computations were done in personal R code available from OSF. 
 
Results 
 

Table 3 shows the KL values for Scenario 1, a sample of 𝑁𝑁 = 100, 000, without repli-
cations. For the 2PLM data-generation model, the accuracy of the estimated densities was 
perfect for both 2PLM and ULCM engines. When the data-generating model was a 
ULCM(𝒦𝒦 = 2), the estimated densities were more precise when the fitting model was also a 
ULCM, yet both estimates were close to zero indicating high accuracy. Lastly, in the conditions in 
which the data-generation model was the loglinear model, the fitted ULCM produced more accurate 
estimates of the total-score density (𝛑𝛑�+) compared to the estimated 2PLM, and also more precise 
estimates of the item-score density (𝛑𝛑�). 

Figures 2 and 3 show the results for Scenario 2 (𝑁𝑁 = 5, 000, repeated 50 times). Consistent 
with expectations, the fitted ULCM provided more accurate estimated densities, as indicated by 
the smaller KL values. Specifically, for the 2PLM as the data-generation model, the ULCM 
engine provided results as accurate as the 2PLM engine for both 𝛑𝛑� and 𝛑𝛑�+.  For the ULCM as 
the data-generation model, the ULCM engine provided more accurate estimates of     𝛑𝛑� and 𝛑𝛑�+.  
 

 

https://osf.io/fc9ge/
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Table 3. Results for Scenario 1: Values of 𝐊𝐊𝐊𝐊(𝛑𝛑||𝛑𝛑�) and 𝐊𝐊𝐊𝐊(𝛑𝛑+||𝛑𝛑�+) 
 for Three Data-Generating Models and Two Engines 

      Data-Generating Model  
 

Engine                 Density              
 

      2PLM 
    

       ULCM(𝒦𝒦 = 2 )                         
Loglinear        
Model 

2PLM 𝛑𝛑 0.000 0.024  0.370 
                  𝛑𝛑+ 0.000 0.000  0.014 

ULCM 𝛑𝛑 0.000 0.018  0.135 
                  𝛑𝛑+ 0.000 0.000  0.000 

Note. The numbers represent the Kullback-Leibler divergence between the true and the estimated densities, 
KL(𝛑𝛑||𝛑𝛑�) and KL(𝛑𝛑+||𝛑𝛑�+). All values are rounded to three decimals.  

 
For 𝛑𝛑�+,  though, the accuracy was almost equal and very close to perfect (i.e., KL approached 
zero). For the loglinear data-generation model, the results differed slightly for 𝛑𝛑� and 𝛑𝛑�+. For 
𝛑𝛑�,  the ULCM engine provided more accurate estimates on average, but with significantly more 
variance than the estimates of the 2PLM. In only 4 out of 50 cases (8%) were the accuracy of 
the 2PLM estimates more accurate than those of the ULCM. In one of these four cases, the 
estimated value tended to infinity (indicated in red color in Figure 2) which indicates an issue 
in the ULCM fit in this replication. For     𝛑𝛑�+, the ULCM engine provided almost perfect 
estimates and were substantially more accurate than the 2PLM engine, without any substantial 
variance as displayed for 𝛑𝛑�.  
 
Conclusions 
 

The ULCM engine showed strong flexibility in handling a data structure that involves 
higher-order interaction effects among item scores, as evidenced by the accurate estimations of   𝛑𝛑� 
and 𝛑𝛑�+ from simulated data generated using a loglinear model. The 2PLM engine showed 
precise results across all 50 replications of Scenario 2, yet were less accurate than ULCM engine 
on average. The results indicated that constructing a FlexCAT using the ULCM as an engine 
and the total score as a score, might provide unbiased results even if the data-generating 
mechanism is unknown or misspecified. 

Study 3 
 

Study 1 and Study 2 showed that under the simulated conditions the ULCM is a reliable 
density estimator ready for use as an engine, but the proposed CAT procedure has not yet been 
illustrated. Thus, the aim of Study 3 was to apply LSCAT and to compare it to an IRT-CAT to 
demonstrate their similarities and differences. More specifically, post-hoc simulations were 
conducted, wherein each CAT application was employed on existing empirical data as if responses 
were being collected adaptively (Finkelman et al., 2017; Forbey et al., 2000). The outcomes of 
the two CAT applications were then compared with those of the complete item score data. 
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Figure 2. Scenario 1: The Accuracy of 𝛑𝛑�  
With Sample Size 𝑁𝑁 = 5, 000, and 𝑅𝑅 = 50 Replications 

 
Note. The three panels represent the three data-generating models. Within each panel the boxplots 
represent the dispersion of the 𝛑𝛑 estimates using the ULCM (right) and the 2PLM (left), respectively. 
The red-colored points indicate outliers that tend to infinity. 

 
Method 

 
Data. This study used the same empirical dataset as Van der Ark and Smits (2023), which consisted 

of 16 items from the ”learning task orientation” scale of the School Attitude Questionnaire – Internet 
(SAQI; Vorst, 2006). This scale focuses on identifying potential behavioral and educational challenges in 
students at school. The items, initially comprising three answer categories, were dichotomized for 
simplicity—following Van der Ark and Smits’ suggestion—by merging two categories. This resulted in a 
final dataset of 16 dichotomized items coded as 1 for ’true’ and 2 for ’false’. The final dataset was then 
randomly split into two parts: a “training” set (80% of the respondents, 𝑁𝑁 = 3, 369) and a “validation” 
set (20% of the respondents, 𝑁𝑁 = 842). The training set was used for calibrating, and the validation set 
was used for the simulation process, which is described below. 

Settings for the CAT algorithms. The IRT-CAT was calibrated using the training set by estima-
ting a 2PLM as an engine and the latent trait θ as the score using three standard error (𝑆𝑆𝑆𝑆) values of 𝜃𝜃� 
as stopping rules. Firstly, a value of 0.30, commonly employed as the default in the field (Wainer & 
Dorans, 2000), was used. Additionally, to demonstrate the effects of different stopping rule requirements, 
two more rules (𝑆𝑆𝑆𝑆 = 0.35 and 𝑆𝑆𝑆𝑆 = 0.40) were applied. The IRT-CAT calibration was accomplished 
using the MIRT package (Chalmers, 2012) in R (R Core Team, 2023), with default settings. The adaptive 
procedure was simulated in the validation set using the MIRTCAT package (Chalmers, 2016) under the 
default settings for each of the three stopping rules. 

LSCAT—in terms of the flexCAT framework—incorporated a ULCM as an engine and the 
total score for scoring. For calibrating LSCAT, the primary task was to estimate 𝛑𝛑�+ using the 
best fitting ULCM according to BIC, as Study 1 indicated. In setting up the adaptive procedure 
of LSCAT, the choices of Van der Ark and Smits (2023) for item selection, score estimation, and 
stopping rule were followed. Van der Ark and Smits proposed to stop the CAT once the modal 
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Figure 3. Scenario 2: The Accuracy of 𝛑𝛑�+ 
with Sample Size 𝑁𝑁 = 5, 000, and 𝑅𝑅 = 50 Replications 

Note. The three panels represent the three data-generating models. Within each panel the boxplots 
represent the dispersion of the 𝛑𝛑+ estimates using the ULCM (right) and the 2PLM (left), respectively. 

 
value of  𝛑𝛑� exceeded some criterion 𝑐𝑐; that is, 𝑚𝑚𝑎𝑎𝑎𝑎 𝛑𝛑�+ > 𝑐𝑐. Similar to IRT-CAT, three versions 
of the stopping rule were employed, with 𝑐𝑐 =  0.97, 0.75, and 0.50, respectively (details for 
establishing these values are presented in the next section). LSCAT simulation was run in the 
validation set in R (R Core Team, 2023) using an adjustment of, and additions to the code of the 
POLCA package (Linzer & Lewis, 2011). For a detailed explanation of the item selection and 
stopping rules of the proposed CAT, the interested reader is referred to Van der Ark & Smits 
(2023). 

Comparing complete and CAT outcomes. Because of the obvious trade-off between pre-
cision and efficiency (increasing the required precision increases the number of items used; 
decreasing the required number of items will lead to less precision; Thompson, 2019), all other 
things equal, an adaptive method using more items is expected to be more precise, therefore it is 
common to align either the precision or the efficiency among methods and evaluate the other 
outcome. It was chosen to do the latter, which was accomplished by adjusting the stopping rules 
in order to match the efficiency of the two types of CAT. As IRT-CAT is the standard in the field, 
its most common setup was used as a basis. The most popular stopping rule of IRT-CAT is halting 
the assessment once the standard error (𝑆𝑆𝑆𝑆) of the 𝜃𝜃� is below a pre-specified value. Using this 
rule, for each 𝑆𝑆𝑆𝑆-value, IRT-CAT was run in the validation set and the average number of required 
items was assessed. For LSCAT, testing stops if the modal value of 𝛑𝛑�+ exceeds a certain 
threshold 𝑐𝑐 (Van der Ark & Smits, 2023). Subsequently, the precision criterion c of LSCAT 
was adjusted to match the SE of IRT-CAT by selecting values that resulted in an average 
number of administered items equal, to the nearest 0.5, to that of the IRT-CAT conditions. The 
outcomes under this value were recorded. 

Having adjusted the stopping rules to align the CATs’ efficiency, comparisons were then able 
to be made between each CAT and the full-item test. The evaluations were made based on the 
following outcomes: the response burden and precision. As measures of response burden, the 
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average (and 𝑆𝑆𝑆𝑆) of the number of administered items was used, along with the percentage of 
items left to be administered (called efficiency).  

Due to some challenges, adjustments needed to be made in the evaluation of precision. First, 
comparing the precision of LSCAT and IRT-CAT is hindered by the use of different scores. 
Moreover, as this was a real-data simulation no true (i.e., “data-generating”) values of the 
respective scores were available. To deal with these challenges, the scores of both CAT appli-
cations were transformed into a common 𝑧𝑧-score metric. To compute the 𝑧𝑧-scores, the full-item 
mean  and 𝑆𝑆𝑆𝑆 were used (for LSCAT these statistics were obtained using the full-item total-
score density; for IRT-CAT these were obtained using the distribution of estimates of 𝜃𝜃 based 
on the full-item set). In addition, when examining precision, the estimate based on the full-item 
test was treated as a proxy for the true value, and the final score from each adaptive test was 
used as the estimated value (Smits et al., 2018). Given these adjustments, precision was studied 
using three outcomes: (1) the average difference between true and estimated 𝑧𝑧-values, (2) the 
correlation between true and estimated values, and (3) the difference between the true and 
estimated 𝑧𝑧-values as a function of the true 𝑧𝑧-value. The latter outcome was reported only if it 
provided information over and above the first two outcomes. 
 
Results 
 

Table 4 shows the response burden and precision as a function of the respective stopping 
rules for LSCAT and IRT-CAT. Columns three and four show the outcomes for the number of 
items administered. Table 4 shows that the mean difference in the number of administered items 
between the two methods was less than 0.5 in each condition. The efficiency measure corrob-
orates this conclusion, showing very similar percentages of unadministered items. The 𝑆𝑆𝑆𝑆, how-
ever, suggests that the distribution of the number of items used was different between the two 
methods; below this distribution is studied in more detail. With regard to the precision of the CAT 
applications, IRT-CATs estimated 𝑧𝑧-score and true 𝑧𝑧-score values were nearly identical, as 
evidenced by the mean difference of zero and almost perfect correlation. LSCAT also yielded 
near-perfect results, demonstrating negligible mean differences between the estimated and true 𝑧𝑧-
scores. 
 

Table 4. Results for Study 3: 
 Comparison of LSCAT and IRT-CAT with Full Test Scores 

          Number of Items Used          CAT Vs. Full Test 𝑧𝑧-Score 

Method Stopping Rule     M (SD) Efficiency Mean Difference Correlation 

IRT-CAT S E (θ̂) < 0.30 15.53(0.93)   2.93%  0.00  0.999 
S E (θ̂) < 0.35 12.07(3.68) 24.56% 0.00 0.992 

             S E (θ̂) < 0.40 9.50(4.36) 40.65% 0.00 0.980 

LSCAT max π̂ +  > 0.97 15.07(0.79)  5.81% 0.00 0.999 
                 max π̂ +  > 0.75 12.01(1.88) 24.96% −0.01 0.993 
                   max π̂ +  > 0.50 9.68(2.36) 39.48% 0.00 0.978 

Note. Efficiency = the percentage of unadministered items; 𝑆𝑆𝑆𝑆 = standard error. 
 

To further inspect the difference in the distribution of the number of items used, the relationship 
between response burden and the true 𝑧𝑧-score was studied under the three stopping rules. Figure 4 shows 
smoothed trends across participants and, although the overall average response burden (i.e., number of 



Journal of Computerized Adaptive Testing 
Anastasios Psychogyiopoulos, Niels Smits, L. Andries van der Ark 

Estimating the Joint Item-Score Density Using an Unrestricted Latent Class Model 
  

150| JCAT Vol. 12 No 3           July 2025 

administered items) was aligned between CAT types, the shape of the distributions was very different. 
For LSCAT, more items were required in the center of the 𝑧𝑧-score scale, whereas for IRT-CAT more 
items were required in the extreme values. The different colors and line types in Figure 4 represent the 
distinct stopping rules that were considered in Study 3 within each CAT method. The same color (and 
line type) between CAT methods represent the matching rule that yielded a similar average 
number of administered items. The curves follow a locally estimated scatterplot smoothing 
(LOESS) function, smoothing the pattern over participants. Notably, due to the type of 
smoothing of the LOESS function, the curves in the top figure might exceed the available data 
points, indicating a potential trend beyond the range of the available number of items required. 

 
Figure 4. Response Burden as a Function of Respondents’ 𝑧𝑧-score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The plot shows the average number of items required as a function of true 𝑧𝑧-value in the 𝑥𝑥-axis, 
comparing the results of IRT-CAT (top figure), and LSCAT (bottom figure). 
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Conclusions 
 

This study compared a complete CAT application that uses LSCAT with a conventional IRT-
CAT application. This comparison involved post-hoc simulations using empirical data, where 
the efficiency in terms of response burden and precision between CAT outcomes and the full-
item test were found to be almost identical. Moreover, it was found that in IRT-CAT, respondents 
with true 𝑧𝑧-scores closer to extremes required more items on average, whereas LSCAT required 
more items for respondents closer to the center of the 𝑧𝑧-score scale (see Figure 4). 

 
Discussion and Conclusions 

 
The current research built upon the recently proposed FlexCAT framework (Van der Ark & 

Smits, 2023), in which CAT is decomposed into an engine and a score, and the choice of engine 
and score depends on the measurement or prediction problem at hand. In this framework, a 
flexible CAT application was explored using ULCM as the engine. It allows for either item 
scores (LRCAT) or total scores (LSCAT) as the scoring option. The paper demonstrates that 
the ULCM can accurately estimate both the joint item-score density (𝛑𝛑) and the total-score 
density (𝛑𝛑+). 

Based on the results of Study 1, BIC outperformed other competing information criteria 
AIC, aBIC, and AIC3 in selecting the number of latent classes that yield the most accurate 
estimation of 𝛑𝛑. This result is partially in line with previous simulated studies that considered 
many latent classes and large sample sizes (e.g., Morgan, 2015). BIC, in principle, tends to 
impose a larger penalty for model complexity when compared to other criteria and it is consis-
tent; if the true model exists within the set of considered models, the BIC will always select this 
model as the number of observations tends to infinity (Visser & Speekenbrink, 2022). This 
characteristic can be advantageous in scenarios involving less restrictive LCMs, as an increasing 
number of latent classes tends to make them more similar to each other. For estimating 𝛑𝛑+, all 
competing information criteria (AIC, AIC3, BIC, aBIC) performed equally well in selecting 
the model that produced the most accurate estimate. This result can be explained by the 
transformation of 𝛑𝛑 to 𝛑𝛑+ using Equation 1, which effectively cancels out estimation errors at 
the response-pattern level, resulting in a more aggregated outcome. Future research might 
investigate whether selecting the number of latent classes using resampling methods, such as the 
bootstrapped likelihood ratio test (Peel & McLachlan, 2000) or the Vuong-Lo-Mendell-Rubin 
likelihood ratio test (Lo et al., 2001), leads to even more accurate estimate of 𝛑𝛑 or 𝛑𝛑+. These 
resampling methods are computationally demanding and, therefore, were not considered in the 
current study. 

In Study 2, it was demonstrated that the ULCM is able to estimate 𝛑𝛑 and 𝛑𝛑+ relatively 
accurately even if the data-generating mechanism involves higher-order interaction effects among 
item scores. Notably, the estimated densities were more accurate than the estimates obtained by 
the two-parameter logistic model, which is arguably the most popular engine in CAT. These 
findings suggest that in situations where the pattern underlying the data is unknown or complex, 
less restrictive models, such as the ULCM, might be needed to calibrate a possible CAT. It is 
important to emphasize, though, that the results of Study 2 do not disprove IRT-CAT. In 
situations where the data align with a unidimensional scale or exhibit a clear pattern of specific 
dimensions, IRT-CAT might indeed yield almost perfect accuracy. However, it is important to 
consider the stringent assumptions of IRT models for item calibration, especially in recent appli-
cations where different data sources are combined and might yield a multimodal pattern. When 
these assumptions are not met, LSCAT can be a valuable alternative with benefits that extend 
beyond those investigated in this paper. 
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Over and beyond the results of the first two studies, a proof-of-principle study (Study 3) was 
also conducted that demonstrated that the LSCAT precision in a CAT simulation using empir-
ical data was nearly identical to an IRT-CAT simulation. This involved comparing LSCAT and 
a standard IRT-CAT method, focusing on their precision relative to the full test score from the 
post-hoc simulation. Adjusted for efficiency, the results showed that both methods achieved 
precision comparable to the full test score. These findings show that LSCAT is a useful alter-
native to IRT-CAT, offering also some benefits. For example, LSCAT was found to be more 
efficient than IRT-CAT close to the extremes of the respondents’ abilities, demonstrating a poten-
tial advantage of the proposed method in situations where IRT-CAT has difficulty in accurately 
measuring respondents with either very low or very high ability traits. However, as this proof-of-
principle study relied solely on the SAQI dataset, future research should further explore 
LSCAT’s capabilities. 

This paper is one of the first studies—along with Van der Ark and Smits (2023)—showing 
how effectively a ULCM can be used as a density estimation tool for item scores or the total score 
in a CAT application. While LSCAT offers several benefits, it is important to also consider its 
drawbacks. Although LSCAT offers the advantages of prediction and flexibility in handling 
different item categories, its computational demands raise concerns. The ULCM requires 
considering the entire dataset to estimate the probability of each item-response pattern, making 
it computationally intensive. The personal computer used in this study was limited to handling 20 
items per simulation condition. Future research should aim to accommodate more items by 
exploring more efficient estimation techniques. Furthermore, while the current research focused 
on dichotomous items, introducing a third response category would result in an exponential 
increase in the number of potential item-response patterns, further exacerbating the computational 
burden. This issue, often referred to as “the curse of dimensionality,” hinders the practical 
applications of LSCAT, necessitating further investigation. 

Nevertheless, this paper’s results add to research exploring non-IRT CAT methods (e.g., 
Rodrıguez-Cuadrado et al., 2020; Ueno & Songmuang, 2010; Van Buuren & Eggen, 2017; Yan 
et al., 1998, 2004), by investigating LSCAT. The unique features of LSCAT have the potential 
to contribute significantly to the CAT field, aligning with the ongoing advancements in technology 
as highlighted in recent research (Veldkamp, 2022; von Davier, Di Cerbo, et al., 2021). 
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Appendix A: Study 1 Results 

 

 

Figure A1. Boxplots of Kullback-Leibler Divergence for 𝛑𝛑  
Across Four Information Criteria (Within Cells), Three Sample Sizes (Rows),  

and Three Item Counts (Columns), for 𝐉𝐉 = 9 
 

Note. The boxplots show the dispersion of KL divergence values between the simulation conditions of different 
true number of latent classes (𝒦𝒦) and the different sample sizes (𝑁𝑁). Within each condition (cell), the spread of KL 
values is divided by each competing information criterion, indicating which showed on average better performance 
(i.e., lower KL values). The median within each condition for each information criterion is also shown numerically. 
The blue color indicates the information criterion that yielded the best estimate of 𝛑𝛑.  
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Figure A2. Boxplots of Kullback-Leibler Divergence for 𝛑𝛑  
Across Four Information Criteria (Within Cells), Three Sample Sizes (Rows),  

and Three Item Counts (Columns), for 𝐉𝐉 = 18 

Note. The boxplots show the dispersion of KL divergence values between the simulation conditions of different 
true number of latent classes (𝒦𝒦) and the different sample sizes (𝑁𝑁). Within each condition (cell), the spread 
of KL values is divided by each competing information criterion, indicating which showed on average better 
performance (i.e., lower KL values). The median within each condition for each information criterion is also 
shown numerically. The blue color indicates the information criterion that yielded the best estimate of . 
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Figure A3. Boxplots of Kullback-Leibler Divergence for 𝛑𝛑+  

Across Four Information Criteria (Within Cells), Three Sample Sizes (Rows),  
and Three Item Counts (Columns), for 𝐉𝐉 = 9 

 

Note. The boxplots show the dispersion of KL divergence values between the simulation conditions of different 
true number of latent classe33s (𝒦𝒦) and the different sample sizes (𝑁𝑁). Within each condition (cell), the spread 
of KL values is divided by each competing information criterion, indicating which showed on average better 
performance (i.e., lower KL values). The median within each condition for each information criterion is also 
shown numerically. The red color indicates the information criteria that yielded the best estimate of 𝛑𝛑+.  
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Figure A4. Boxplots of Kullback-Leibler Divergence for 𝛑𝛑+  

Across Four Information Criteria (Within Cells), Three Sample Sizes (Rows),  
and Three Item Counts (Columns), for 𝐉𝐉 = 18 

 
 

Note. The boxplots show the dispersion of KL divergence values between the simulation conditions of different 
true number of latent classes (𝒦𝒦) and the different sample sizes (𝑁𝑁). Within each condition (cell), the spread 
of KL values is divided by each competing information criterion, indicating which showed on average better 
performance (i.e., lower KL values). The median within each condition for each information criterion is also 
shown numerically. The red color indicates the information criteria that yielded the best estimate of 𝛑𝛑+.  
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Appendix B: Population Model Parameters 

 
 
 
 
 
 
 
 

Table B1. MSAT-B Items and Item Parameters Used as Population Values  
to Generate Data Under a 2PLM in Study 2 

 

Item 𝛼𝛼 𝛽𝛽 𝛾𝛾 𝛿𝛿 
Item 49 1.06 -2.02 0 1 
Item 27 1.08 1.29 0 1 
Item 41 1.50 0.44 0 1 
Item 7 1.04 0.38 0 1 
Item 38 1.42 -0.80 0 1 
Item 28 0.88 1.94 0 1 
Item 9 0.96 -1.07 0 1 
Item 47 0.95 -2.99 0 1 
Item 75 0.92 -0.25 0 1 

Note: The default settings in R package MIRT were used for the 2PLM parameterization. MSAT-B = Czech 
Medical School Admission Test – Biology; 𝛽𝛽 = difficulty parameter; 𝛾𝛾 = lower asymptote; 𝛿𝛿 = upper asymptote. 
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Table B2. Response Probabilities Used as Population Parameters  
to Generate Data Under a ULCM(2) using the MSAT-B Dataset in Study 2 

 

Class(ξ) Response 
𝑦𝑦 = 0 𝑦𝑦 = 1  

Item 49  
ξ = 1  0.22 0.78 
ξ = 2  0.02 0.98 
 
ξ = 1  

Item 27 
   0.89 

 
0.11 

ξ = 2  0.55 0.45 
 
ξ = 1  

Item 41 
0.82 

 
0.18 

ξ = 2  0.29 0.71 
 
ξ = 1  

Item 7 
0.74 

 
0.26 

ξ = 2  0.32 0.68 
 
ξ = 1  

Item 38 
0.46 

 
0.54 

ξ = 2  0.05 0.95 
 
ξ = 1  

Item 28 
0.90 

 
0.10 

ξ = 2  0.68 0.32 
 
ξ = 1  

Item 9 
0.42 

 
0.58 

ξ = 2  0.10 0.90 
 
ξ = 1  

Item 47 
0.11 

 
0.89 

ξ = 2  0.02 0.98 
 
ξ = 1  

Item 75 
0.60 

 
0.40 

ξ = 2  0.21 0.79 

Note: The response probability refers to the probability of giving a certain response (𝑦𝑦 ∈ (0, 1)) conditional on 
the class membership.  ULCM(2) = unrestricted latent class model with two latent classes. 
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Table B3. Class Weights Used as Population Parameters to Generate Data  
Under a ULCM(2) using the MSAT-B Dataset in Study 2 

 

𝑃𝑃(𝛯𝛯 = 𝜉𝜉) 
 

𝑃𝑃(𝛯𝛯 = 1) = 0.62  
𝑃𝑃(𝛯𝛯 = 2) = 0.38 

Note: The probabilities corresponding to class weights indicate the proportion of respondents belonging to each class. 
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Table B4. The Population Parameters of the Loglinear Model Used  
to Generate Data with Fifth-Order Interaction Effects in Study 2 

 
Note. See Study 2 for details.  

 
 
 
 
 
 
 


