
 

 

Journal of Computerized Adaptive Testing 
Volume 2 Number 3 

October 2014 

Detecting Item Preknowledge in  
Computerized Adaptive Testing Using Information 

Theory and Combinatorial Optimization 
 

Dmitry I. Belov 
DOI 10.7333/1410-0203037 

 
 

The Journal of Computerized Adaptive Testing is published by the  
International Association for Computerized Adaptive Testing 

www.iacat.org/jcat 
 

ISSN: 2165-6592 

©2014 by the Authors. All rights reserved.  
This publication may be reproduced with no cost for academic or research use.  

All other reproduction requires permission from the authors; 
 if the author cannot be contacted, permission can be requested from IACAT. 

Editor 
David J. Weiss, University of Minnesota, U.S.A

Associate Editor Associate Editor 
G. Gage Kingsbury 
   Psychometric Consultant, U.S.A. 

Bernard P. Veldkamp  
   University of Twente, The Netherlands 

Consulting Editors 
John Barnard 
   EPEC, Australia 

Wim J. van der Linden  
   CTB/McGraw-Hill, U.S.A. 

Juan Ramón Barrada  
   Universidad de Zaragoza, Spain 

Alan D. Mead  
   Illinois Institute of Technology, U.S.A. 

Kirk A. Becker  
   Pearson VUE, U.S.A. 

Mark D. Reckase  
   Michigan State University, U.S.A. 

Barbara G. Dodd  
   University of Texas at Austin,  U.S.A. 

Barth Riley  
   University of Illinois at Chicago, U.S.A. 

Theo Eggen  
   Cito and University of Twente, The Netherlands 

Otto B. Walter  
   University of Bielefeld, Germany 

Andreas Frey  
   Friedrich Schiller University Jena,  Germany 

Wen-Chung Wang  
   The Hong Kong Institute of  Education 

Kyung T. Han  
   Graduate Management Admission Council, U.S.A. 

Steven L. Wise  
   Northwest Evaluation Association, U.S.A. 

Technical Editor 
Martha A. Hernández 



 
 

 

37 |  JCAT  Vol. 2 No. 3      October 2014 

Journal of Computerized Adaptive Testing 
Volume 2, Number 3, October 2014 

DOI 10.7333/1410-0203037 

ISSN 2165-6592 

 

Item preknowledge occurs when some examinees (called aberrant examinees) have had access to 
a subset of items (called a compromised subset) from an administered test prior to an exam. As a 
result, aberrant examinees might perform better on compromised items as compared to uncom-
promised items. When the number of aberrant examinees is large, the corresponding testing pro-
gram and its users might be negatively affected because the aberrant examinees might be given 
invalid scores. There are numerous item preknowledge detection methods exploiting the differ-
ence in an examinee’s performance between compromised items and uncompromised items.  
These methods are based on an incorrect assumption that the compromised subset is known and 
that it does not vary across subgroups of aberrant examinees. Computer simulations demonstrated 
that when this assumption is slightly violated the detection rate drops dramatically. This paper in-
troduces a new algorithm—the 3D algorithm—merging information theory and combinatorial op-
timization for detecting subgroups of aberrant examinees and their corresponding compromised 
subsets of items. 

 
Keywords: test security, item preknowledge, hypothesis testing, Kullback-Leibler divergence, 
combinatorial optimization, simulated annealing. 
 
Item preknowledge occurs when some examinees (called aberrant examinees) have access to 

a subset of items (called the compromised subset) from an administered test prior to an exam. As 
a result, aberrant examinees will likely perform better on compromised items as compared to un-
compromised items. When the number of aberrant examinees is large, the corresponding testing 
program—whether using paper-and-pencil tests (P&P), computer-based tests (CBT), multistage 
tests (MST), or computerized adaptive tests (CAT)—and its users (e.g., universities, companies, 
government organizations) might be negatively affected because the aberrant examinees might 
be given invalid scores. 

There are numerous person-fit statistics that exploit differences in performance between 
compromised items and uncompromised items in order to detect aberrant examinees (Karabatsos, 
2003; McLeod, Lewis, & Thissen, 2003; Belov, Pashley, Lewis, & Armstrong, 2007; Shu, Hen-
son, & Luecht, 2013). These statistics assume that the compromised subset is known and does 
not change from one subgroup of aberrant examinees to another, which is not realistic. For ex-
ample, the compromised subset can be defined by assigning to each item a probability of 
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preknowledge (McLeod et al. 2003); however, Hui (2010) demonstrated through computer simu-
lations that when the number of items with a high probability of preknowledge increases (e.g., 
due to a large number of aberrant subgroups each with a unique compromised subset), the detec-
tion rate drops dramatically. 

There are alternative approaches that operate without the above assumption. The CUSUM 
method (van Krimpen-Stoop & Meijer, 2001; Armstrong & Shi, 2009) is only applicable when 
compromised items are positioned sequentially in the test (Tendeiro & Meijer, 2012). Response 
time modeling (van der Linden & Guo, 2008) has great promise to detect item preknowledge. 
However, the actual response times are only available in CAT, where examinees cannot return to 
previously seen items; otherwise, as is the case in CBT or MST, it is not clear how to compute 
the time that an examinee actually dedicated to each item (i.e., examinees might still think about 
previously seen items in order to get back to them if there are any doubts about chosen answers); 
and additionally, response times can be realistically faked. Cluster analysis (Wollack & Maynes, 
2011) and factor analysis (Zhang, Searcy, & Horn, 2011) have been applied to detect item 
preknowledge; however, both methods rely on number of response matches, which is not appli-
cable in MST and CAT where the actual test varies across examinees. 

Thus, item preknowledge is difficult to detect due to multiple unknowns involved—unknown 
subgroups of examinees (at unknown schools or test centers) accessing unknown compromised 
subsets of items prior to taking the test. This paper demonstrates that disentangling the problem 
becomes feasible via combinatorial optimization. 

This study is based on research by Belov (2013). In particular, he studied the problem of item 
preknowledge (with particular emphasis on CAT) in three distinct cases: Case 1, when the com-
promised subset is known; Case 2, when the compromised subset is covered by a known collec-
tion of subsets; and Case 3, when the compromised subset is unknown. In order to make Case 3 
tractable, Belov made three assumptions about the compromised subset. Then, he applied ran-
dom search criteria to identify each compromised subset, which in computer simulations resulted 
in good detection rates. However, his approach for Case 3 has two major practical weaknesses: 

1. The second assumption by Belov (2013) about known bounds on size of compromised 
subsets might be violated in practice. If these bounds are too narrow, then the random 
search will miss the actual compromised subset. On the other hand, if these bounds are 
too wide then it will make the search space too large for the random search to converge to 
a compromised subset in a reasonable time. 

2. Random search for the compromised subset was biased by a probability for each item to 
be potentially compromised, where the probability was computed as normalized item ex-
posure without item exposure control (Belov, 2013). However, when item exposure is 
controlled, many items will have the same probability (right on the boundary of the expo-
sure constraint), which will also make the search space too large for the random search to 
converge in a reasonable time. In addition, in P&P and CBT all administered items have 
the same level of exposure. 

This paper suggests a new approach to address these two weaknesses. This approach ad-
dresses Case 3 from Belov (2013) where bounds on the size of compromised subsets are un-
known and all items have equal probability of potential compromise. 

Throughout the paper the following notation is used: 
• lowercase letters , , ,...a b c  denote scalars; 
• capital letters , , ,...A B C  denote sets; S denotes the number of elements in a set ;S  and 

∅  denotes an empty set; 
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• bold capital letters , , ,...A B C  denote functions (including discrete distributions defined 
by probability mass functions); 

• lowercase Greek letters , , ,...α β γ  denote random variables; and 
• capital Greek letters , , ,...Ω Ψ Θ  denote collections of subsets; Ω  denotes the number of 

subsets in a collection Ω . 

Problem Statement 
It is assumed that there is a relation between examinees that partitions them into non-

intersecting groups. For example, the following relation partitions examinees into test centers—
the same geographic location where examinees take a test (e.g., room, college, state, region, 
country). The same geographic location is the most common relation. However, as Belov (2013) 
pointed out, there are other relations highly practical for test security: same high school, same 
undergraduate college, same test-prep center, or same group in a social network. Using these re-
lations could potentially help to detect aberrant examinees, even if they take an exam at different 
geographic locations. 

This study assumes that each group cannot have more than one subgroup of aberrant exami-
nees. Considering how small a group can be (e.g., class) or how specific a corresponding relation 
can be (e.g., same group in a social network), this assumption is realistic. The detector of item 
preknowledge presented here is based on this assumption. When a group has multiple subgroups 
of aberrant examinees and their compromised subsets have small intersection, the detection rate 
might drop. The methodology developed here can be generalized to be effective even when mul-
tiple subgroups of aberrant examinees are present within a group. Such generalization is briefly 
described. 

Large-Scale Item Preknowledge 
Aberrant examinees and compromised items can be partitioned into aberrant subgroups and 

compromised subsets, respectively, where each aberrant subgroup has preknowledge of a unique 
compromised subset (Figure 1). A group (e.g., a test center) with aberrant examinees is called an 
affected group. Note that in CAT aberrant examinees are administered items drawn from the 
whole CAT item bank. Therefore, it is possible that an aberrant examinee might be administered 
none or just a few items from the corresponding compromised subset. Group and subgroup al-
ways refer to examinees; set and subset always refer to items. 

The problem addressed in this paper is now stated as follows: how to detect all triplets, each 
consisting of an affected group, its aberrant subgroup of examinees, and the corresponding com-
promised subset of items? 

Analysis of the Problem 
Due to item preknowledge, if a group *X  is affected (see Figure 1) and the corresponding 

compromised subset *S  (see Figure 1) is known, then the distribution of a person-fit statistic 
that is sensitive to item preknowledge, computed for examinees from affected group *,X  should 
be unusual among distributions of the person-fit statistic computed for examinees from unaffect-
ed groups. 

Denote a compromised subset of items as *S and consider a corresponding aberrant exami-
nee * *∈j X  who is administered a test *jT . There are multiple person-fit statistics sensitive to a 
large difference in performance of examinee *j  on administered items from *jT  that belong to     
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Figure 1. Terminology of Large-Scale Item Preknowledge 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
*S  versus administered items that do not belong to *S . Without loss of generality, denote the 

corresponding person-fit statistic as *, *S jd , such that aberrant examinees should be located at the 
right tail of the corresponding null distribution. Note that the case when ** =∅ jS T  for each 
aberrant examinee *j  eliminates any danger for test security. Therefore, it is assumed that 

** ≠ ∅ jS T  for each aberrant examinee *.j  
All examinees form group .J  Given an arbitrary subset of items ,S  the empirical distribution 

of the statistic ,S jd  computed for examinees from group ⊂X J  is denoted as ,S XH . Given an 
affected group *⊂X J  with corresponding compromised subset *,S  the item preknowledge 
causes the empirical distribution *, *S XH  to be dissimilar from the empirical distribution *,S YH , 
where Y  is an unaffected group. The unaffected group can be created by random sampling of 
examinees from given data or by simulation. This paper uses unaffected groups with simulated 
examinees (called simulated groups). 

Given an analyzed subset of items S , one can estimate how unusual is the distribution of 
,S jd , ∈j X  at analyzed group ⊂X J  by computing the following statistic, which is a modifica-

tion of the statistic cg  by Belov (2013): 
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where 1 2{ , ,..., }nY Y Y is a fixed random sample of simulated groups. The function 1 2( || )D H H  is 
computed according to the following equation (Cover & Thomas, 1991; Kullback & Leibler, 
1951): 
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(2) 

 
where 1H  and 2H  are discrete distributions defined on a finite set .L  Due to the definition of 
Kullback–Leibler divergence (KLD) in Equation 2, the larger the divergence 1 2( || ),D H H  the 
higher the dissimilarity between distributions 1H  and 2.H  The value of 1 2( || )D H H  is always 
non-negative and equals zero only if the two distributions are identical. KLD  is asymmetric; that 
is, in general, 1 2 2 1( || ) ( || )≠D H H D H H . The sum in Equation 1 is used to balance the asym-
metry of the KLD. 

If a group of examinees *⊂X J  is affected with a corresponding compromised subset of 
items *,S then the value of ( *, *)S XG  should be the largest among all subsets of set Q ; in other 
words, * arg max ( , *),

⊂
=

S Q
S S XG  where Q  contains items with a high risk to be compromised. 

Practical examples of Q  include a previously pretested section in P&P or CBT form, a previous-
ly pretested testlet in MST form, or a subset of items with high exposure in previous CAT ad-
ministrations. 

Thus, for a given affected group. Equation 1 can be used as an objective in a combinatorial 
search for a corresponding compromised subset. But how to find out which groups are affected?  
To detect affected groups the following statistic is introduced: 

 

1
( , ),

=

=∑
m

X i
i

c S XG  
 

(3) 

 
where subsets 1 2, ,..., mS S S  are randomly generated such that ⊂iS Q , 1, 2,..., .=i m  Since each 
compromised subset can intersect with multiple probes ,iS  the statistic in Equation 3 should 
have larger values for affected groups. From the above analysis it follows that each affected 
group *X  can be detected using the statistic ,Xc then ( , *)S XG  can be used as an objective in a 
combinatorial search for a compromised subset *.S   

Detection Algorithm 
A new algorithm for detecting large-scale item preknowledge, called the 3D algorithm, is 

named as such because it performs the following sequence of detections: (1) Detect affected 
groups; given each affected group, (2) Detect a corresponding compromised subset; given each 
affected group and corresponding compromised subset, (3) Detect the aberrant subgroup. 
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3D Algorithm (Conceptual Overview) 
Step A: The set of relations R  is built based on data automatically acquired from examinees,  

  which might include the following relations: same geographic location, same high  
  school, same undergraduate college, same test-preparation center, or same group in a 
  social network. 

Step B: For each relation ∈r R  repeat the following steps: 
Step 1: Partition all examinees J  into groups using the relation r . 
Step 2: Each group *⊂X J  having value of *Xc  above the corresponding critical value 

(computed for significance level 1α ) is detected as affected. 
Step 3: For each affected group *,X  a combinatorial search identifies the corresponding 

compromised subset *S  maximizing ( , *)S XG , .⊂S Q  Each examinee *j  
from the affected group *X  having value of *, *S jd above the corresponding criti-
cal value (computed for significance level 2 /α R ) is detected as aberrant. 

Having many relations might cause a problem of multiple comparisons. Following the 
Bonferroni correction (Abdi, 2007), the significance level 2α  is divided by the number of rela-
tions in set R  (see Step 3 above). The Type I error of the 3D algorithm can be estimated theoret-
ically. If 1=R  (only one relation is considered) and the number of examinees is 10,000 (100 
groups with 100 examinees per each group), then the number of incorrectly detected examinees 
can be bounded from above by 1 2100 100α α× × ×  (this is possible if critical values are computed 
from the empirical distributions, see details below). In general, the number of incorrectly detect-
ed examinees can be bounded from above by  

 
1 2max / ,α α

∈Ω
∈

Ω∑
r

r Xr R
X R   

(4) 
 

where Ωr is a collection of groups partitioning J  for a given relation .∈r R  

Using Simulated Annealing to Detect a Compromised Subset 
For each group *X detected as affected, the 3D algorithm runs a simulated annealing as pro-

posed by Kirkpatrick, Gelatt, & Vecchi (1983) in order to detect subset *S that would maximize 
Equation 1. Simulated annealing is a heuristic for finding an optimal solution to a given uncon-
strained optimization problem. The name comes from annealing in metallurgy, a technique in-
volving heating and controlled cooling of a material to reduce its defects (van Laarhoven & 
Aarts, 1987). The convergence of simulated annealing can be analyzed by its reduction to a Mar-
kov chain (Bertsimas & Tsitsiklis, 1993). Simulated annealing was successfully applied to solve 
a number of practical problems in psychometrics (Veldkamp, 1999; van der Linden, Veldkamp, 
& Carlson, 2004; Brusco, Koehn, & Steinley, 2013). To the author’s best knowledge, this is the 
first application of simulated annealing (as well as combinatorial optimization in general) to test 
security. 

For each affected group *,X  the simulated annealing starts with an initial solution that pro-
vides the largest value of ( , *)iS XG  (see random probes 1 2, ,..., mS S S introduced for Equation 3). 
The initial solution is assigned to a global solution *S and a local solution 0.S  Then multiple 
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trials are performed to improve *S by exploring the following random modifications of 0S : 
 

Modification: 1 2 3
Probability: (1) (2) (3)P P P

, 
(5) 

 
where  

(1) (2) (3) 1+ + =P P P  (actual values are given in the section on computer simulations), 
Modification 1 adds a random item from 0\Q S to 0S , 
Modification 2 swaps a random item from 0\Q S with the random item from 0S , and 
Modification 3 removes the random item from 0S . 

If a current random modification results in an improvement of the global solution, then this mod-
ification is accepted for both *S and 0;S otherwise, this modification is accepted only for 0S with 
a probability, which is gradually decreasing according to a “cooling” schedule. Accepting non-
optimal modifications prevents getting stuck in a local maximum.  

Simulated annealing has the following “cooling” schedule. Probability of accepting a non-
optimal modification depends on the parameter t  (called temperature). The initial value of t  is 

0 1
10max max ( , ).

⊂ =
=

m

iX J i
t G S X  After each trial the temperature t  is reduced as = ×t t d , where 

0 1< <d  (called the cooling parameter). The simulated annealing terminates when 0 /≤t t h . Pa-
rameters 0 ,t  ,h  and d  control the convergence of the simulated annealing to a local (possibly 
global) maximum: the larger their values the slower the convergence but larger the value of 
Equation 1. 

Detailed Description of the 3D Algorithm 
The following describes detailed steps of the 3D algorithm for a currently selected relation 

.∈r R  Step B selects each group with the value of Equation 3 from a critical region identified at 
Step A. For each selected group *,X  Steps 1–5 implement simulated annealing for a combinato-
rial search of a corresponding compromised subset *.S  Step 7 detects each examinee * *∈j X  
with value of the statistic *, *S jd  from a critical region identified at Step 6. 
Step A: For each group ⊂X J  compute the statistic Xc  according to Equation 3. Given the sig- 

 nificance level 1α  compute the critical value 1v  as the 1(1 )α−  percentile of ,Xc  .⊂X J  
Step B: For each group * ,⊂X J  such that * 1,>Xc v  repeat the following steps: 

Step 1: Set the global solution 
1

* arg max ( , *),
=

=
m

i
i

S S XG  the local solution 0 *,=S S  and 

the temperature 0.=t t  
Step 2: Set 0.=S S Simulate random variable {1, 2,3}δ ∈  according to the discrete distri-

bution of Expression 5 and modify ,S respectively. 
Step 3: If ( , *) ( *, *),>S X S XG G  indicating that an improvement to the global solution 

has been found, then set 0 =S S  and * =S S  (update the global solution) and go to 
Step 5; otherwise continue to Step 4. 
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Step 4: Simulate uniformly distributed [0,1).γ ∈  If [ ]( )0exp ( , *) ( , *) /γ < −S X S X tG G  

(probability of accepting a modification to the local solution 0S  that did not im-
prove the global solution *S ) then set 0 =S S  (update the local solution). 

Step 5: If 0 />t t h  then = ×t t d  and go to Step 2 (perform more trials to improve the 
global solution); otherwise continue to Step 6 (no more trials). 

Step 6: Given significance level 2 ,α compute the critical value 2v  as 2(1 )α−  percentile 
of *, ,S jd *∈j X  (i.e., the statistic *,S jd is computed only for examinees from *).X
This will guarantee that Expression 4 is an upper bound for the Type I error. 

Step 7: Each examinee * *∈j X  with *, * 2>S jd v  is detected as aberrant. 

Generalized 3D Algorithm 
The 3D algorithm can be generalized to detect multiple aberrant subgroups within each af-

fected group. This generalization is described below, where for each affected group *X  at Step 
2, all potentially compromised subsets are detected and added to the corresponding collection 

*.∆X For each affected group *X  at Step 3, aberrant examinees with different compromised sub-
sets from the collection *∆X  are detected, where the Bonferroni correction (Abdi, 2007) takes 
into account the size of the collection *.∆X  A computational study analyzing performance of this 
generalization goes beyond this paper. 

Steps in the Generalized 3D Algorithm 
Step A: A set of relations R  is built based on data automatically acquired from examinees, 

   which might include the following relations: same geographic location, same high 
   school, same undergraduate college, same test-preparation center, or same group in a  
  social network. 

Step B: For each relation ∈r R  repeat the following steps: 
Step 1. Partition all examinees J  into groups using the relation .r  For each group 

⊂X J  compute the statistic .Xc Given the significance level 1,α  compute the criti-
cal value 1v  of ,Xc  .⊂X J  Each group *⊂X J  with * 1>Xc v  is added to a collec-
tion of affected groups Ψ  and the corresponding collection of compromised subsets 
is initialized * : { };∆ = ∅X  also, a clone of *X  denoted as *X  is added to a collection 

.Ψ  
Step 2. Select the first group *X  from the collection .Ψ  A combinatorial search identi-

fies the corresponding compromised subset *S  maximizing ( , *).S XG  Add *S  to 
the collection *∆X  of potentially compromised subsets for group *.X  Given the sig-
nificance level α  compute the critical value v  of *, ,S jd *.∈ j X  Each examinee 

*∈ j X  with *, > S jd v  is substituted by a simulated non-aberrant examinee. Recom-

pute *.Xc  If 1* ≤Xc v  then remove *X  from the collection Ψ  (no more aberrant sub-

groups left in *X ). Repeat Step 2 until the collection Ψ  becomes empty. 
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Step 3. At each aberrant group *∈ΨX  perform the following two steps for each com-
promised subset ** :∈∆XS  
Step 3.1. For significance level 2 */ /α ∆XR  compute the critical value 2v  of *, .S jd  
Step 3.2. Each examinee *∈j X  with *, 2>S jd v  is detected as aberrant. 

Computer Simulations 
This section presents two experiments. The first experiment demonstrates that the use of in-

formation about compromised items does help detect aberrant examinees with high power. The 
second experiment demonstrates that when this information has relatively small noise the power 
drops dramatically but the 3D algorithm is able to prevent this drop. 

Three detectors of item preknowledge were compared. The first detector applied the lz statis-
tic (Drasgow, Levine, & Williams, 1985) and it was used as a baseline in all studies. The second 
detector applied the KLD statistic—a person-fit statistic developed by Belov et al.  (2007). The 
third detector was the 3D algorithm incorporating the KLD statistic. All detectors were imple-
mented in C++ by the author. 

Detector Based on the lz Statistic  
lz  (Drasgow et al., 1985) is a normalization of the statistic by Levine & Rubin (1979) and it is 

computed as follows: 
 

  ,λ

λ

λ −
= −j

ed
v

 (6) 

 ln (1 ) (1 ) ln (0 ),λ χ θ χ θ
∈

= + −∑
j

i i i i
i T

P P  (7) 

(1 ) ln (1 ) (0 ) ln (0 ),λ θ θ θ θ
∈

= +∑
j

i i i i
i T

e P P P P  (8) 

2
(1 )

(1 ) ln (1 ) ln ,
(0 )λ

θ
θ θ

θ∈

 
=   

 
∑

j

i
i i

i T i

v
P

P P
P

 (9) 

 
where {0,1}χ ∈i  is the observed response to item ∈ ji T , (1 )θiP  is the probability of a correct 
response to item i for latent trait ,θ  and (0 ) 1 (1 ).θ θ= −i iP P  However, the true value of θ  is 

unknown in practice and an estimate θ̂  is commonly used instead. This study used the expected 
a posteriori (EAP) estimator with a uniform prior.  

The statistic lz is often used as a baseline in computational studies of item preknowledge 
(Levine & Drasgow, 1988; Karabatsos, 2003; Shu et al.,  2013). However, lz does not explicitly 
take into account information about compromised items. lz is operationalized in three steps: 

1. For each examinee ∈j J  compute jd  (Equations 6–9). 
2. Given a significance level ,α compute the critical value v  as the (1 )α−  percentile of 

,jd  .∈j J  
3. Each examinee ∈j J  with >jd v  is detected as aberrant. 
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Detector Based on the KLD Statistic 
The KLD between posteriors of θ computed from responses to uncompromised and compro-

mised items, respectively, was chosen as a person-fit statistic (Belov et al., 2007). This person-fit 
statistic was demonstrated to be effective for detecting item preknowledge in CAT (Belov, 2011, 
2013; Chao, Chen & Chen, 2011) and P&P tests (Belov et al., 2007). 

More precisely, given a subset of items S  and examinee j  who is administered a set of 
items ,jT  the person-fit statistic , \( || )=

j jS j T S S Td D P P  (Equation 2) is computed, where \jT SP  is 
the posterior of θ  computed from responses of examinee j  to administered items that do not 
belong to S , and 

 jS TP  is the posterior of θ  computed from responses of examinee j  to admin-
istered items that belong to S . If the examinee j  has preknowledge of items in subset ,S  then  
the distribution 

 jS TP  will be shifted toward higher levels of θ  more than the distribution \jT SP
will. Clearly, this shift will be even larger for lower ability examinees. Since low-ability exami-
nees involved in item preknowledge have the largest negative impact on the scoring, the statistic 

,S jd  is highly practical. Note that the use of the word shift is only for illustrative purposes; the 
actual dissimilarity might not be so easily described. However, this dissimilarity can be meas-
ured by the KLD \( || )

j jT S S TD P P  computed by Equation 2. The KLD detector is, therefore, im-
plemented with the following three steps: 

1. Assume a subset of compromised items ⊂S Q . For each examinee ∈j J  compute 

, \( || ).=
j jS j T S S Td D P P  

2. Given a significance level α ,compute the critical value v  as the (1 )α−  percentile of 

, ,S jd .∈j J  
3. Each examinee ∈j J  with , >S jd v  is detected as aberrant. 

Simulation Design 
Multiple simulation studies were conducted using disclosed real-life Logical Reasoning (LR) 

items of the Law School Admission Test (LSAT). The response probability for each item was 
modeled by the three-parameter logistic (3PL) model with D = 1.7 (Lord, 1980). The CAT item 
bank consisted of 500 LR items. The distribution of discrimination (ai), difficulty (bi), and guess-
ing (ci) parameters of the items in the CAT bank had the following minimums, maximums, 
means, and standard deviations, respectively: (ai), minimum 0.28, maximum 1.67, mean 0.75, 
standard deviation 0.24; (bi) minimum −2.47, maximum 2.92, mean 0.49, standard deviation 
1.13; and (ci) minimum 0.00, maximum 0.52, mean 0.17, standard deviation 0.1. The distribution 
of discrimination and difficulty in the CAT bank is shown in Figure 2. 

The item selection criterion for CAT was the maximization of Fisher information at the cur-
rent estimate of ability θ̂ . The estimator of θ  was the EAP estimator with a uniform prior. The 
ability estimate was initialized at ˆ 0.θ = The test length was fixed at 50 items for each examinee. 
The item exposure constraint was set to 0.4. 

The Type I error rate was computed as follows (this was an empirical probability for an ex-
aminee to be falsely detected): 
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Figure 2. Distribution of Discrimination and 
Difficulty in the CAT Item Bank 

 
 
 

 

[number of detected examinees] [number of correctly detected examinees] .
[number of all nonaberrant examinees]

−  (10) 

 
The detection rate was computed by 
 

[number of correctly detected examinees] .
[number of all aberrant examinees]

 (11) 

 
Each simulation study was performed as follows: 

1. All 10,000 examinees were randomly partitioned into 100 test centers (groups) with ap-
proximately 100 examinees per test center. Non-aberrant examinees were simulated with 
abilities drawn from N(0, 1). 

2. CAT was simulated without item preknowledge (no aberrant examinees), where item ex-
posure was bounded from above by 0.4. 

3. A set, ,Q of items with the highest exposure (equal to 0.4 because the item exposure con-
straint was 0.4) was created. This step resulted in Q  with 69 items (Figure 3). Set Q  rep-
resented potentially compromised items. 

4. Aberrant examinees were simulated with abilities drawn from U(−3,−2), U(−2,−1), or 
U(−1,0), where the probability of correct response to a compromised item equals 1 (since 
memorizing a correct answer for a multiple-choice item is trivial). The percentage of af-
fected test centers was 1% and 5%. The percentage of aberrant examinees in each affect-
ed test center was 10% and 20%. At each affected test center, aberrant examinees substi-
tuted random non-aberrant examinees such that the total number of examinees per each 
affected test center fluctuated around 100 in order to size affected test centers similarly to 
unaffected test centers. 
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5. Each affected test center *
kX  was assigned a unique random compromised subset 

* ,⊂kS Q  such that * 45=kS  and compromised items were drawn uniformly from .Q  
Steps 1–5 simulate a realistic scenario of item preknowledge. Although more exposed 
items have higher probability of being compromised, it does not guarantee that each aber-
rant subgroup of examinees will have access to all of these items prior to the exam. Such 
a realistic design makes the detection problem much more difficult than in the current lit-
erature. Often, researchers assume that the compromised items have high difficulty 
(Karabatsos, 2003; McLeod et al., 2003), which is not true in real CAT where highly ex-
posed items (with highest risk to be compromised) have difficulties fluctuating around 0 
(see Figure 3). Also, researchers assume a large number of compromised items adminis-
tered to each aberrant examinee; for example, Shu et al., (2013) assumed lower bounds of 
30%, 50%, and even 70%. The present study assumed a lower bound of only 20%, simi-
lar to Karabatsos (2003). 

6. Simulate CAT with item preknowledge, where item exposure was bounded from above 
by 0.4.  

7. Run each item preknowledge detector and compute its Type I error rate (Equation 10) 
and detection rate (Equation 11). 

 
Figure 3. Distribution of Discrimination and Difficulty in Q  

 
Parameters for the Detectors 

Each posterior of θ  was computed for the following θ levels: −5, −4.9, − 4.8, …, 5. Detectors 
lz and KLD ran for significance level α of 0.005, 0.01, 0.02, 0.03, 0.04, and 0.05. The 3D algo-
rithm ran under the following conditions: 

1. The KLD statistic was used as the person fit statistic , .S jd  
2. Parameters for detecting affected test centers: 

a. Given test center X  and subset of items ,S  the empirical distribution ,S XH  of 
the KLD statistic ,S jd  was computed using five bins [0, 10], [10, 20], …, [40, 
50]. 
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b. Number of simulated test centers 1 2, ,..., nY Y Y  used in Equation 1 was 10.=n  
c. Number of random probes used in Equation 3 was 100,=m  where for each 

random probe iS , 1, 2,..., ,=i m ⊂iS Q  and 0.2 0.8 .≤ ≤iQ S Q  
d. Significance level 1 0.1α = ; thus, it was assumed that the number of affected 

test centers could not exceed 10% of all test centers. 
3. Parameters for searching each compromised subset by the simulated annealing: 

a. Every possible modification to a local solution had equal probability to be se-
lected, i.e., (1) (2) (3) 1/ 3.= = =P P P  

b. Parameters defining cooling schedule: 10000,=h  0.95.=d  
4. Parameters for detecting aberrant examinees: The significance level 2 1/α α α=  was 

chosen from {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} to guarantee that the 3D algorithm had the 
same Type I error rate as the other detectors. 

Experiment 1 
This experiment was designed to determine if the use of information about compromised 

items allowed detecting aberrant examinees with high power. Two detectors were compared (lz 
and KLD), where only one test center was affected (with 10 aberrant examinees) and the corre-
sponding compromised subset was known. There were four scenarios for four different distribu-
tions of aberrant examinees: U(−3,−2), U(−2,−1), U(−1,0), and U(0,1). In all scenarios, both de-
tectors resulted in similar Type I error rates, which were equal or just under nominal significance 
level α ∈{0.005, 0.01, 0.02, 0.03, 0.04, 0.05}. This is expected behavior because both detectors 
used critical values computed as percentiles of corresponding empirical distributions (see above). 
The empirical detection rates are presented in Figure 4, where it can be seen that KLD was sensi-
tive to the θ distribution of aberrant examinees (compare its detection rates for distribution 
U(0,1) with other distributions). Overall, KLD clearly outperformed lz. This is due to the fact that 
the compromised subset was known. But what will happen when the compromised subset is un-
known and it is assumed that the compromised items are the whole set Q ? Intuitively, a large 
drop in detection rates would not be expected for KLD (or for any other statistic that explicitly 
uses information about compromised items) since each compromised subset was 45 items long 
and all of these items were chosen randomly from set Q  with 69 items. In other words, the noise 
in the assumption seems relatively small. A counterintuitive answer to this question is given by 
Experiment 2. 

Experiment 2 
This experiment considered 3 (distribution of aberrant examinees) × 2 (number of affected 

test centers) × 2 (number of aberrant examinees at each affected test center) + 1 = 13 scenarios 
simulating item preknowledge in CAT. Thus, 13 × 10,000 = 130,000 response vectors were ana-
lyzed for item preknowledge by three different detectors. One additional scenario simulated CAT 
without item preknowledge. Total running time on a personal computer with Intel® Core™ i7 
CPU 860 2.8 GHz was about one hour. 

In each scenario, all detectors resulted in similar Type I error rates, which were equal or just 
under the nominal significance level α ∈{0.005, 0.01, 0.02, 0.03, 0.04, 0.05}. This was expected 
behavior because each detector used critical values computed as percentiles of corresponding 
empirical distributions (see Step 2 of the lz and KLD detectors; and Steps A and 6 of the detailed 
description of the 3D algorithm). 
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Figure 4. Detection Rates With One Affected Test Center and 
10 Aberrant Examinees Drawn From Different Distributions  

(Solid Green Line Corresponds to Detector lz; Short Dashed Blue Line 
Corresponds to Detector KLD With Known Compromised Subset) 

 
 
                a. Distribution of Aberrant                              b. Distribution of Aberrant 
                    Examinees is U(−3, −2)                                      Examinees is U(−2, −1) 

 
 
                c. Distribution of Aberrant                                b. Distribution of Aberrant 
                    Examinees is U(−1, 0)                                       Examinees is U(0, 1) 
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The detection rates for the 12 scenarios modeling item preknowledge are presented in Fig-
ures 5–7. The detection rate of KLD dropped to zero (compare Figures 5–7 with Figure 4). This 
drop agrees with the results of simulation studies by Hui (2010) using a person-fit statistic pro-
posed by McLeod et al., (2003). This drop indicates that all detectors explicitly relying on infor-
mation about compromised items are not stable in the presence of noise. At the same time, the 
use of the 3D algorithm prevented this drop (Figures 5–7), which can be explained by the follow-
ing: 

1. Simulated annealing provides a good approximation of each compromised subset, which 
decreases the amount of noise in the information about compromised items. 

2. The nested structure of the 3D algorithm (first, detect affected test centers and then, for 
each affected test center detect its aberrant examinees) allows using a larger (than target-
ed) significance level for detecting aberrant examinees, which results in higher power but 
still with the targeted Type I error rate (see Equation 4). 

3. For the simulation design described above, the statistic in Equation 3 for detecting affect-
ed test centers performed well. In each scenario modeling item preknowledge, the 3D al-
gorithm detected all affected test centers. 

Discussion and Conclusions 
Item preknowledge is difficult to detect due to multiple unknowns involved—unknown sub-

groups of examinees from unknown affected groups (e.g., affected test centers) accessing un-
known compromised subsets of items prior to taking the test. The major objective of this re-
search was to explore the possibility of disentangling this problem using combinatorial optimiza-
tion. This is an important practical problem because if compromised items can be identified then 
it is possible to detect aberrant examinees with high power (see the results of Experiment 1 in 
Figure 4). 

The major result of this study is formulated as the 3D algorithm that performs the following 
sequence of nested steps: 

1. Detect affected groups of examinees.  
2. For each affected group, detect the corresponding compromised subset of items using 

combinatorial optimization. 
3. For each affected group and corresponding compromised subset, detect an aberrant sub-

group of examinees. 
In computer simulations, the 3D algorithm outperformed two modern detectors (lz and KLD) 

and demonstrated great promise to meet the objective (see Figures 5–7). In particular, multiple 
aberrant subgroups were simulated, each having access to a unique random subset of set Q , 
where Q  contained items that had high exposure in previous CAT administrations. When  the 
KLD detector was applied alone (under the incorrect assumption that the compromised subset 
was the whole Q ), the resultant detection rates dropped to zero (compare detection rates of KLD 
from Figure 4 to Figures 5–7). At the same time, when the KLD statistic was incorporated into 
the 3D algorithm the resultant detection rates were higher than for the detector lz (see Figures 
5−7). 

Performance of the 3D algorithm depends on a good choice of the set Q . Ideally, this set 
should include only compromised items. In other words, for aberrant subgroups of examinees 

1 2, ,...E E  with corresponding compromised item subsets 1 2, ,...Z Z  the ideal choice of Q  is 

1 2 ...=  Q Z Z . This study used a simple method of identifying Q  as a set of items with expo- 
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Figure 5. Detection Rates When Aberrant Examinees 
Were Drawn From U(−3, −2) 
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Figure 6. Detection Rates When Aberrant Examinees 
Were Drawn From U(−2, −1) 
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Figure 7. Detection Rates When Aberrant Examinees 
Were Drawn From U(−1, 0) 
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sure (in previous CAT administration) higher than a fixed threshold. Clearly, the detection rate of 
the 3D algorithm might drop if this threshold is too high ( Q  does not include enough compro-
mised items) or too low (Q  includes too many uncompromised items). Recently, multiple statis-
tical methods were developed to detect compromised items (Choe, 2014; Obregon, 2013; van der 
Linden & Guo, 2008). These methods might potentially improve the identification of Q . 

Given the subset Q , the performance of the 3D algorithm mainly depends on the following 
parameters: ,m  the number of random probes (see Equation 3), and two parameters of the cool-
ing schedule h  and .d   With a higher value of the m parameter, more affected groups can be de-
tected and better initial solutions for the simulated annealing can be found. Higher values of h
and d  allow simulated annealing to get closer to each compromised subset. Thus, higher values 
of these parameters increase the resultant detection rate but decrease speed. In order to increase 
speed, the 3D algorithm can be parallelized for modern multicore CPUs by running simulated 
annealing for each affected group in a separate thread. 

Large-scale item preknowledge is a type of test collusion. Test collusion can be described as 
large-scale sharing of test materials or answers to test questions. The source of the shared infor-
mation could be a teacher, a test-preparation company, the Internet, or examinees communi-
cating on the day of the exam (Wollack & Maynes, 2011). Any type of test collusion causing an 
unusual change of examinees’ performance from one subset of items to another can be detected 
by the 3D algorithm incorporating the corresponding person-fit statistic. Practical examples of 
test collusion detectable by the 3D algorithm include: a teacher correcting answers to difficult 
items for a subgroup of students in a class, and a subgroup of examinees working together on a 
subset of items at some test center. Clearly, the 3D algorithm is applicable to all major test deliv-
ery methods: P&P, CBT, MST, and CAT. 

This research and its results should be interpreted as a work in progress because of the fol-
lowing: 

1. The assumption about one aberrant subgroup per affected group (Figure 1), though cer-
tainly realistic, is a limitation. This limitation is addressed in this paper by formulation of 
the generalized 3D algorithm (see above), but its study goes beyond this paper. 

2. The first stage of the 3D algorithm (detecting affected groups) is crucial for its overall 
performance because if an affected group is undetected then all its examinees will skip 
further stages of detection. The 3D algorithm uses a high value of 1 0.1α =  and employs 
random search (see Equation 3), which might converge too slowly when subset Q  is 
larger and/or compromised subsets are smaller. Therefore, the first stage needs a separate 
study and, perhaps, an improvement. 

3. Computational studies were rather limited since their purpose was only to demonstrate a 
proof of concept. Comparison study using real data, where all aberrant examinees are 
tagged, is needed. 

4. The 3D algorithm (as well as the generalized 3D algorithm) is an algorithmic framework 
where embedded subroutines and statistics can be modified in order to improve overall 
performance for a specific testing program and/or type of test collusion. The following 
modifications are possible: 
a. The 3D algorithm can be applied for CAT, MST, and CBT with posteriors of speed 

[see van der Linden (2011) for details on response time modeling]. In this case, the 
following person-fit statistics can be used: 

  
(12) 
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 (13) 

where 
 jS TV  is the posterior of speed computed from response times of examinee j  

to the administered items jT  that belong to ,S and \jT SV  is the posterior of speed 

computed from response times of examinee j  to the administered items jT  that do 
not belong to S . The statistics in Equations 12 and 13 use additional information 
from examinees (response times) which should improve the overall performance of 
the 3D algorithm. 

b. The following alternatives for the combinatorial search of the compromised subsets 
can substitute the simulated annealing within the 3D algorithm: greedy heuristic (Pa-
padimitriou & Steiglitz, 1982); genetic algorithm (Mitchell, 1996); or tabu search 
(Glover & Laguna, 1997). 

c. Critical values for the 3D algorithm can be estimated via asymptotic distributions or 
empirical distributions computed from simulated data. 
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