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The adaptive measurement of change (AMC) refers to the use of computerized 
adaptive testing (CAT) at multiple occasions to efficiently assess a respondent’s 
improvement, decline, or sameness from occasion to occasion. Whereas previous 
AMC research focused on administering the most informative item to a respondent at 
each stage of testing, the current research proposes the use of Fisher information per 
time unit as an item selection procedure for AMC. The latter procedure incorporates 
not only the amount of information provided by a given item but also the expected 
amount of time required to complete it. In a simulation study, the use of Fisher 
information per time unit item selection resulted in a lower false positive rate in the 
majority of conditions studied, and a higher true positive rate in all conditions studied, 
compared to item selection via Fisher information without accounting for the expected 
time taken. Future directions of research are suggested.    

 
Keywords:  computerized adaptive testing, adaptive measurement of change, item 
selection, Fisher information, response-time modeling 
 

The measurement of individual change has been a well-known topic in the psychometric 
literature for decades (e.g., Cronbach & Furby, 1970; Lord, 1956, 1958; Rogosa & Willett, 1983; 
Willett, 1989). In medical contexts, assessment may be conducted on multiple occasions in order 
to ascertain whether the severity of a respondent’s condition has improved, declined, or remained 
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the same from one occasion to the next. Indeed, the measurement of individual change has been 
studied among chiropractic patients with chronic neck or low back pain (Hays, Spritzer, 
Sherbourne, Ryan, & Coulter, 2019), patients undergoing foot and ankle treatment (Hung et al., 
2019), and children with chronic pain (Kashikar-Zuck et al., 2016). Psychological assessment may 
also be conducted on more than one occasion for a given respondent to determine whether a 
significant change in their beliefs, mental health, or behavior has occurred (Brouwer, Meijer, & 
Zevalkink, 2013; Kruyen, Emons, & Sijtsma, 2014; Wang & Weiss, 2018). In the field of 
education, testing might be repeated to gauge a student’s degree of improvement (or decline) in a 
given domain over time (Wang & Weiss, 2018; Weiss & Von Minden, 2011). 

When conducting the measurement of individual change, the amount of time between testing 
occasions is an important consideration. Such follow-up time might vary from setting to setting 
depending on the context of the testing scenario, the participants, the anticipated amount of time 
needed for an observable change to occur, and logistical concerns. In medical contexts, Hays et al. 
(2019) used a three-month follow-up, whereas Hung et al. (2019) stratified their results by follow-
up time, with three months being the shortest follow-up and a period of over six months being the 
longest. In the contexts of psychological and educational assessment, respectively, Brouwer et al. 
(2013) and Wang and Weiss (2018) both examined results after a follow-up time of approximately 
one year.   

Although a frequent subject of research, the measurement of individual change has also elicited 
controversy. Change scores have been characterized as exhibiting problematic properties such as 
low reliability, negative correlation between initial level and change score, and scaling difficulties 
(e.g., Bereiter, 1963; Cronbach & Furby, 1970; Embretson, 1995). Some authors have suggested 
that item response theory (IRT) approaches to measuring individual change are superior to 
approaches based on classical test theory (Brouwer et al., 2013; Doucette & Wolf, 2009; Wang & 
Weiss, 2018). IRT provides a framework for modeling respondent answers from the latent trait 
being measured and the parameters of the items administered. One benefit of IRT is that it 
facilitates the use of computerized adaptive testing (CAT), in which the item selected for a 
respondent at a given stage of testing is influenced by the respondent’s answers to previous items 
in the assessment. Such tailoring of the assessment to each respondent allows more efficient 
measurement (van der Linden & Glas, 2000; Weiss, 2004), including within the context of 
measuring change (Kim-Kang & Weiss, 2008; Weiss, 2011; Weiss & Von Minden, 2011).   

One concern that arises when assessment occurs at multiple occasions longitudinally is the 
cumulative respondent and administrative burden that is incurred as the result of repeated testing. 
Respondent burden refers to the extent to which individuals taking an assessment (or multiple 
assessments) feel that the experience is stressful, difficult, or time-consuming (Graf, 2008). 
Administrative burden refers to the extent to which costs are incurred through the supervision of 
the assessment process (Forbey & Ben-Porath, 2007). When assessment is conducted on multiple 
occasions, it is vital to keep instruments short in order to avoid requiring an inordinate amount of 
time from respondents and providers (Kruyen et al., 2014; Smits, Zitman, Cuijpers, den Hollander-
Gijsman, & Carlier, 2012). The aforementioned benefit of CAT in improving the efficiency of 
measurement thus becomes particularly important for assessments that are repeated longitudinally. 
The use of CAT in evaluating a respondent’s improvement, decline, or sameness from occasion to 
occasion is called the adaptive measurement of change (AMC; Kim-Kang & Weiss, 2008). 

Traditionally, the respondent and administrative burden of a CAT has been quantified based 
on the number of items administered by the CAT. Accordingly, most item selection procedures in 
CAT have been developed with the goal of minimizing this number (assuming that “all else is 
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equal” with respect to measurement properties). For instance, a classic item selection procedure is 
to maximize Fisher information at the respondent’s current estimate of the latent trait (Lord, 1980); 
this method is designed to obtain a precise estimate with as few items as possible. In more recent 
work, some researchers have used an alternative paradigm in which it is not the number of items 
that is used as a proxy for respondent and administrative burden, but rather the total time taken by 
the assessment. Indeed, it is typical that some items in a bank tend to be answered more quickly 
than others; respondents and administrators might be willing to accept a larger number of “fast” 
items if the total amount of time taken by those items is reduced. In medical contexts, for example, 
it is important to make testing time as short as possible due to the limited time that providers can 
spend with each patient (Dugdale, Epstein, & Pantilat, 1999; Smits et al., 2012). In education, time 
efficiency is likewise critical because of the limited classroom time that teachers have with students 
(Welch & Frick, 1993).  

For CAT settings in which the burden of an assessment is measured by the time required to 
complete it, a modification of the traditional Fisher information (FI) item selection procedure has 
been developed (Fan, Wang, Chang, & Douglas, 2012). Specifically, the proposed modification is 
to maximize Fisher information per time unit (FITU) rather than solely FI. The former item 
selection procedure has been found to enhance the time efficiency of assessment compared to the 
latter in the context of a single testing session (Fan et al., 2012). 

Given the crucial need for time efficiency in the measurement of individual change, 
particularly considering the cumulative amount of time taken by its multiple test administrations, 
it would be natural to combine the FITU item selection procedure with AMC. This item selection 
procedure can be used in applications of AMC whether assessment is conducted in the educational, 
psychological, or medical context, and irrespective of the follow-up time between testing 
occasions. Indeed, it can be applied as long as the FI and expected time of each item can be 
determined. However, as will be discussed, some details (namely, how to calculate the expected 
time) might change depending on the context. 

A detailed comparison of the two aforementioned item selection procedures (FITU and FI) 
would illuminate the magnitude of difference between these procedures in the AMC setting. 
However, no previous research appears to have explored FITU as an item selection method in 
AMC. The objective of this study was to fill this gap by proposing the use of FITU within the 
AMC framework and comparing it to FI under a variety of conditions in simulation. 

Method 

Hypothesis Testing in AMC 
Although AMC can be used to detect intra-individual change at more than two occasions 

(Phadke, 2017), attention focuses on the case of two occasions, as is common in AMC research 
(Finkelman, Weiss, & Kim-Kang, 2010; Kim-Kang & Weiss, 2008). Letting 1θ  denote a given 
respondent’s latent trait at the first occasion (hereafter Occasion 1), and letting 2θ  denote the 
respondent’s latent trait at the second occasion (hereafter Occasion 2), the null and alternative 
hypotheses are 0 1 2:  H θ θ=  and 1 2:  ,AH θ θ≠  respectively (because the AMC method is intra-
individual, notation indexing different respondents is not used). To conduct the hypothesis test, 
the likelihood-ratio test (Agresti, 1996) can be employed; this test has been used previously in the 
psychometric literature (Klauer & Rettig, 1990; Sinharay, 2017) including in AMC (Finkelman et  
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al., 2010). The logic of this test is to compute the highest value that the joint likelihood of the data 
(pooling the respondent’s answers from Occasion 1 and Occasion 2) can take when the null 
hypothesis is true (i.e., when 1θ  is constrained to equal 2θ ) as well as computing the highest value 
that the joint likelihood can take when 1θ  and 2θ  are allowed to differ. If the ratio of these two 
likelihoods is small, that is, if the former joint likelihood is many times lower than the latter, there 
is strong evidence against the null hypothesis. Mathematically, the following statistic reflecting 
the above logic is calculated as  

 0maximum likelihood constrained under .
unconstrained maximum likelihood

H
Λ =  (1) 

In order to describe the computation of Equation 1, further notation is required. Let 1 2{ , }u u  
denote the respondent’s pooled data from both occasions, with 1u  representing the respondent’s 
vector of answers at Occasion 1 and 2u  representing the vector of answers at Occasion 2. The 

pooled maximum likelihood estimate (MLE) under the null hypothesis, ˆ ,pθ  is then defined as the 
single value of θ  that maximizes the likelihood for the joint data 1 2{ , }.u u  Moreover, the numerator 

of Equation 1 is the corresponding likelihood (i.e., the likelihood when setting ˆ
pθ θ=  and 

computing the likelihood based on the joint data 1 2{ , }).u u  To obtain the denominator, the latent 
trait is estimated separately at Occasion 1 and Occasion 2 using 1u  and 2.u  The resulting final 

MLEs for Occasion 1 and Occasion 2 are denoted 1,
ˆ

finalθ  and 2,
ˆ ,finalθ  respectively. Then Equation 

1 can be expressed as 

                                                     Λ =
𝐿𝐿(𝜃𝜃�𝑝𝑝|{𝒖𝒖1,𝒖𝒖2})

𝐿𝐿�𝜃𝜃�1,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝒖𝒖1� × 𝐿𝐿�𝜃𝜃�2,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝒖𝒖2�
.                                                  (2) 

 
To ascertain whether significant change has occurred from Occasion 1 to Occasion 2, the test 

statistic 2 log− Λ  is computed, and the value of this test statistic is compared to a critical value of 
the chi-square distribution. 0H  is rejected if 2

12 log ,αχ −− Λ >  where 2
1 αχ −  is the 1 α−  quantile of 

the chi-square distribution with one degree of freedom. In the current research, this hypothesis test 
was conducted at the end of the CAT to evaluate if significant intra-individual change has occurred. 
Other research has also investigated its application while assessment is underway as part of a 
variable-length testing paradigm (Finkelman et al., 2010). 

Fisher Information 
 As noted above, CAT involves the selection of items for a respondent based on the answers 

to previous items, and a traditional procedure is to select the item with the greatest FI at the current 
estimate of the respondent’s latent trait. For a dichotomous item ,j  the FI at θ  is defined as 

 
2[ ( )]( ) ,

( ) 1 ( )j
j j

PI
P P

θθ
θ θ

′
=

 − 
 (3) 
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where ' ( )jP θ  is the derivative of ( )jP θ  with respect to .θ  Intuitively, an item with a higher value 
of ( )jI θ  is better able to differentiate θ  from its neighboring values. For the 3-parameter logistic 
(3PL) model using the scaling parameter 1.7,=D  the FI at θ  can also be written as 

 
2

2 2
1 ( ) ( )

( ) 1.7
( ) 1
j j j

j j
j j

P P c
I a

P c
θ θ

θ
θ

 −  − =  
−  

 (4) 

(Lord, 1980).  
To use FI as part of an AMC item selection procedure, the MLE k̂θ  is first computed based on 

the k  previously answered items at the current occasion (for simplicity, the occasion is suppressed 
in the notation). The value ˆ( )j kI θ  is then calculated for each item eligible to be administered. 

Finally, the item with the largest value of ˆ( )j kI θ  is administered to the respondent. This process 
is followed at each occasion.    

Fisher Information per Time Unit 
The FITU item selection procedure is identical to the procedure described for FI, with one 

alteration: in the FITU approach, the value ˆ( )j kI θ  is still computed for each eligible item ,j  but 
this value is divided by the expected time required to complete the item (Fan et al., 2012). The 
item maximizing the resulting quotient is then chosen for administration. The logic behind this 
procedure is that by dividing by an item’s expected value of required time, the selected item will 
be the one that is most time efficient in obtaining information about θ .  

In order to operationalize the above procedure, a method for estimating the expected time taken 
by each item is required. Such a method is provided via response-time modeling. For example, 
van der Linden (2006) developed a lognormal model to relate a respondent’s latent speed (denoted 

)τ  to their response time to item j  (denoted )jT . Under this model, the density of jT  given τ  is  

 ( )( ) 21( | ) exp log .
22

j
jj j j

j

f t t
t
α

τ α β τ
π

  = − − −   
 (5) 

Here jt  denotes a realized value of the random variable jT , and jα  and jβ  are parameters of the 
item within the response-time model. A larger value of jα  indicates that log jT  exhibits less 
dispersion, and a larger value of jβ  indicates that log jT  tends to be larger, on average. 
Specifically, the distribution of log ,jT  given ,τ  is normal with mean jβ τ−  and standard deviation 

1.jα −  Moreover, the expected response time for item ,j  given ,τ  is equal to  

 2( | ) exp( )exp( / 2)j j jE T τ τ β α −= − +  (6) 

(van der Linden, 2011). Hence, combining Equations 3 and 6, the FI (evaluated at the MLE of θ  
following the administration of the thk  item) per expected unit of time for item j  is equal to  
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2

2

ˆ[ ( )]
ˆ ˆˆ ( )(1 ( ))( )

.
( | ) exp( )exp( / 2)

j k

j k j kj k

j j j

P
P PI

E T

θ
θ θθ

τ τ β α −

′
 − =

− +
 (7) 

To utilize Equation 7 as an item selection procedure, a specific value of τ  (for instance, its MLE) 
could be input into the term exp( )τ−  on the right-hand side of Equation 7, thereby providing a 
single value per item and enabling the items to be rank ordered. However, because exp( )τ−  does 
not depend on the item being evaluated (i.e., it is constant across all items ),j  this term is 
immaterial to the rank ordering of items. Therefore, item selection can be based on the equivalent 
criterion  

                                                      
2

2

ˆ ˆ ˆ[ ( )] ( )(1 ( ))ˆ( ) ,
( | ) exp( / 2)

j k j k j kj k

j j j

P P PIC
E T

θ θ θθ
τ β α −

 ′ − × =
+

                                       (8) 

where exp( )C τ= −  for an arbitrary .τ  That is, the eligible item with the largest value of the right-
hand side of Equation 8 is administered to the respondent—a rule that obviates the need for any 
calculations involvingτ and is equivalent to maximizing FITU. As with FI, the FITU item selec-
tion procedure described above can be utilized at each occasion in AMC. 

It is notable that although van der Linden’s (2006) lognormal model is well known in the 
psychometric literature, it is used only as an example in the present research. The FITU procedure 
can easily be used with a different response-time model if such a model provides a better fit to the 
data, whether in the context of educational, psychological, or medical assessment. The expected 
time taken by an item is simply computed with regard to the model used. Moreover, Cheng, Diao, 
and Behrens (2017) recently developed a simplified version of the information per time unit 
approach that does not require fitting a response-time model. In their approach, an item’s 
information is divided by the mean log-transformed response time to the item. Hence, if a 
response-time model has not been fit for a particular application, the methodology of the current 
research can still be implemented using Cheng et al.’s approach as long as response-time data are 
available for each item. 

Simulation Design 
A simulation study was conducted to compare the FI item selection procedure with the FITU 

procedure. The two criteria were tested under a variety of conditions. For each item selection pro-
cedure, the first item at Occasion 1 was selected assuming that the initial MLE was 0̂ 0.θ =  The 
first item at Occasion 2 was selected assuming that the initial MLE was equal to the last MLE 
estimated at Occasion 1 (i.e., 1,

ˆ
finalθ ). All MLEs were bounded on the range [−4, 4]. 

Two hundred eighty-eight items with parameters conforming to the 3PL model were generated 
based on the methodology of a previous simulation study on AMC (Kim-Kang & Weiss, 2008). 
To generate their jb  (difficulty) parameters, Kim-Kang and Weiss divided the range [−4.5, 4.5] 
into 18 consecutive intervals, each of width 0.5. That is, the first interval was [−4.5, −4.0], the 
second interval was [−4.0, −3.5], and so forth, ending with the interval [4.0, 4.5]. Each of the six 
middle intervals (from [−1.5, −1.0] to [1.0, 1.5]) contained the jb  parameters of 24 items; each of 
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the other 12 intervals (from [−4.5, −4.0] to [−2.0, −1.5] and from [1.5, 2.0] to [4.0, 4.5]) contained 
the jb  parameters of 12 items. In the current research, the same approach was taken, with the jb  

parameters within each interval following the uniform distribution (with the lower and upper limits 
of the uniform distribution equal to the lower and upper limits of the given interval). The ja  
(discrimination) parameters were randomly assigned to follow a normal distribution with mean 1.5 
and standard deviation 0.15, based on one of the conditions of Kim-Kang and Weiss. Finally, as 
Kim-Kang and Weiss fixed the jc  (pseudo-guessing) parameter at 0.20 for all items, the same 
procedure was followed here. The scaling parameter D 1.7=  was used.  

In addition to the 3PL parameters, each item was randomly assigned parameters (namely, jα  

and jβ ) corresponding to the response-time model (Equation 5). Following the methodology of 
Sie, Finkelman, Riley, and Smits (2015), this assignment was conducted in two ways. In the first 
approach, jα  and jβ  were both drawn independently of item j ’s 3PL parameters; jα  followed a 
uniform distribution with a lower limit of 1.0 and an upper limit of 3.0, and jβ  followed a uniform 
distribution with a lower limit of 3.0 and an upper limit of 5.0. When selecting these ranges, Sie et 
al. referred to van der Linden (2008), who noted that the ranges aligned with the empirical findings 
of van der Linden (2006) and van der Linden, Breithaupt, Chuah, and Zhang (2007) for these 
parameters. Items with parameters resulting from this procedure are referred to as “Item Bank 1.” 
In the second approach, the jα  parameters were the same as those from Item Bank 1, but the jβ  
parameters were assumed to be positively correlated with the jb parameters of the 3PL model (i.e., 
the more difficult items were assumed to take longer, on average). In particular, the jβ  parameters 
were drawn under the assumption that jb  and jβ  followed a bivariate normal distribution with a 
correlation of 0.65. Each jβ  was randomly sampled from its conditional normal distribution, given 

,jb  with the marginal distribution of jβ  assumed to exhibit the same mean and variance as in Item 
Bank 1 (which were 4.0 and 1/3, respectively). Items resulting from this second approach are 
referred to as “Item Bank 2.” 

Table 1 shows the matrix of 1θ  and 2θ  values that were examined in the study. As can be seen 
in the table, 1θ  ranged from −2.0 to 2.0. For each value of 1,θ  four values of 2θ  were specified: 

1,θ   1 0.5,θ +  1 1.0,θ +  and 1 1.5.θ +  For instance, when 1θ  was set to −2.0, the four values of 2θ  
under study were −2.0, −1.5, −1.0, and −0.5. This procedure for defining 1θ  and 2θ  was identical 
to that of Finkelman et al. (2010) except that the previous research truncated the simulated values 
of 2θ  at 2.0, whereas the current study allowed values of 2θ  higher than 2.0 whenever such values 
were prescribed by the methodology outlined above (see Table 1). 

Simulees’ values of τ  were generated in two different ways. In each, the marginal distribution 
ofτ was taken to be normal with a mean of 0.0 and a standard deviation of 0.24 (Sie et al., 2015). 
In the first approach, values ofτ were generated according to the above distribution, assuming that
τ was independent of 1θ  and 2.θ  The second approach assumed a positive correlation between a 
simulee’s speed and initial ability; in particular,τ and 1θ  were assumed to follow the bivariate 
normal distribution with a correlation of 0.50 (Wang, Chang, & Douglas, 2013). Eachτ was 
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randomly sampled from its conditional normal distribution, given 1.θ  In both approaches, each 
simulee’s value ofτ was assumed to remain constant between Occasion 1 and Occasion 2 (i.e., 
once a simulee’sτ was generated for Occasion 1, the same value of τ was used for Occasion 2).  

 
Table 1. Combinations of 1θ  and 2θ  Examined in the Simulation Study  

 Value of 1θ  
Value of 2θ  −2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 

3.5                 X 
3               X X 

2.5             X X X 
2.0           X X X X 
1.5         X X X X   
1.0       X X X X     
0.5     X X X X       
0.0   X X X X         
-0.5 X X X X           
-1.0 X X X             
-1.5 X X               
-2.0 X                 

 

Note.  An “X” indicates that a given combination was examined. 
 
The two item selection procedures under comparison (FI and FITU) were subjected to the same 

stopping rule. In particular, because the research was conducted assuming a paradigm in which 
respondent and administrative burden are functions of the time spent under assessment, a time 
limit was implemented as the stopping rule. That is, at each administration (Occasion 1 and 
Occasion 2), a given simulee’s assessment proceeded until the cumulative time spent on the test 
reached a specified threshold (which was common to both occasions), upon which the assessment 
for that occasion was immediately terminated. 

Two different time limits were examined. The first time limit was chosen to be approximately 
equal to the expected time spent by a simulee with 0τ =  on 20 randomly selected items from Item 
Bank 1; the second time limit was chosen to be approximately equal to the expected time spent by 
a simulee with 0τ =  on 30 randomly selected items from Item Bank 1. The expected time spent 
by a simulee with 0τ =  on a randomly chosen item from this bank was calculated to be 72.3; as
20 72.3×  = 1446 and 30 72.3×  = 2,169, the two time limits were selected to be 1,450 and 2,175. 
Table 2 summarizes the different conditions of the study that were examined for every combination 
of 1θ  and 2.θ  The table shows three factors (item bank, presence or absence of correlation between 

1θ  and ,τ  and time limit), which were completely crossed. Hence, a total of 23 = 8 conditions were 
tested for each combination of 1θ  and 2.θ  Within every condition and combination of 1θ  and 2 ,θ  
responses and response times of 2,500 simulees were generated. For each simulee and occasion, 
answers to all items were generated according to the 3PL model, and response times for all items 
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Table 2. Conditions of the Simulation Study  
for Every Combination of 1θ  and 2θ  

Condition Item Bank Correlation Between 1θ and τ   Time Limit 
1 1 Yes 1,450 

2 1 No 1,450 
3 2 Yes 1,450 
4 2 No 1,450 
5 1 Yes 2,175 
6 1 No 2,175 
7 2 Yes 2,175 
8 2 No 2,175 

 
were generated according to the lognormal model (Equation 5). The items chosen by each item 
selection procedure for the simulee (and responded to within the time limit) were then determined 
at each occasion. The simulee’s answers to these selected items were subjected to the likelihood-
ratio test to determine whether statistically significant change had occurred between the two 
occasions. The standard significance level of 0.05 was used in the hypothesis test. As in previous 
research on AMC (Finkelman et al., 2010; Kim-Kang & Weiss, 2008), no item was allowed to be 
selected twice at a given occasion, but an item could be selected once at Occasion 1 and once at 
Occasion 2. 

The above design served to isolate the effect of the item selection procedure on the 
classification properties of the likelihood-ratio test for AMC, as all other elements of the simulation 
were standardized. For every condition and combination of 1θ  and 2 ,θ  the false positive rate (FPR; 
i.e., “Type I error rate”) or true positive rate (TPR; i.e., “power”) was calculated for each item 
selection procedure as coupled with the likelihood-ratio test (the FPR was calculated for all 
combinations in which 1 2 ,θ θ=  and the TPR was calculated for all combinations in which 1 2 ).θ θ≠  
Note that for conditions in which 1 2 ,θ θ≠  it was possible for the likelihood-ratio test (which is two-
sided) to reject the null hypothesis 1 2 ,θ θ=  but in the “incorrect direction.” That is, it was possible 
(albeit unlikely) for an increase in a simulee’s true θ  to be observed from Occasion 1 to Occasion 
2 1 2( ),θ θ<  but for the likelihood-ratio test to detect significant change in the opposite direction 
(i.e., to obtain a p-value < 0.05 where the final MLE at Occasion 1 was greater than the final MLE 
at Occasion 2). In conditions such that 1 2 ,θ θ≠  the TPR of each item selection procedure was 
calculated in two ways: first, as the proportion of simulees for whom the likelihood-ratio test was 
significant (regardless of the direction of the difference) and, second, as the proportion of simulees 
for whom the likelihood-ratio test was significant and the difference in MLEs was in the correct 
direction (i.e., aligned with the true difference in θ  from Occasion 1 to Occasion 2). Results were 
similar regardless of which definition of TPR was used; therefore, only results corresponding to 
the second definition are presented. R version 3.5.1 (R Core Team, 2013) was used in the analysis.  
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Results 
The FPR of each item selection procedure, for all combinations of 1θ  and 2θ  for which 1 2θ θ=  

and all conditions, is presented in Figure 1. Among the total of 72 comparisons of FI and FITU 
shown in the figure (across all eight panels), FITU exhibited a lower FPR than FI in 66 
comparisons (91.7%), FI had a lower FPR in five comparisons (6.9%), and the two procedures had 
equal FPRs in one comparison (1.4%). The FPR for the FI procedure ranged from 5.1% to 13.7%, 
with a median of 7.7% and an interquartile range (IQR) of 6.6% to 9.0%. For FITU, the FPR 
ranged from 4.6% to 7.8%, with a median of 5.8% and an IQR from 5.4% to 6.3%. The difference 
between the two procedures’ values (FPR of FITU – FPR of FI, for a given condition and 
combination of 1θ  and 2θ ) had a minimum of −7.0%, a maximum of 0.6%, and a median of − .7% 
with an IQR from −2.9% to  −0.7% across the 72 comparisons, with negative differences indicating 
lower (superior) FPRs for FITU. As can be seen in Figure 1, the difference between the procedures 
tended to be most marked at lower levels of θ. 

The TPR of each item selection procedure, for all combinations of 1θ  and 2θ  for all conditions 
when 2 1 0.5θ θ= + , is presented in Figure 2. The FITU procedure exhibited greater TPR than FI in 
all 72 comparisons shown in the figure. FITU’s TPR ranged from 26.6% to 59.6%, with a median 
of 46.2% and IQR from 40.2% to 51.4%; FI’s TPR ranged from 20.6% to 47.0%, with a median 
of 33.1% and IQR from 25.5% to 38.0%. The difference between the TPRs of FITU and FI had a 
minimum of 2.7%, a maximum of 20.0%, and a median of 13.5% (IQR from 10.8% to 15.5%) 
across the 72 comparisons, with positive differences indicating higher (superior) TPR for FITU. 
The difference between the procedures tended to be greater at low to moderate levels of θ  than at 
the extremes, with the smallest difference tending to occur at the highest level of θ.  

The TPR of both item selection procedures, for all conditions and combinations of 1θ  and 2θ  
when 2 1 1.0θ θ= + , is presented in Figure 3. FITU again exhibited larger TPR than FI in all 72 
comparisons. The TPR of FITU ranged from 74.6% to 98.8%, with a median of 94.5% (IQR from 
89.9% to 96.4%). For FI, the range in TPR was from 50.4% to 95.8%; the median was 77.1% (IQR 
from 63.9% to 82.8%). The difference in TPR between FITU and FI exhibited a minimum of 1.7%, 
a maximum of 39.3%, and a median of 16.6% (IQR of 10.7% to 24.0%). Particularly in conditions 
in which there was a positive correlation between 1θ  and τ  (Conditions 1, 3, 5, and 7), the 
difference between procedures tended to be greater at lower levels of θ  than at higher levels (see 
Figure 3). 

Figure 4 displays information analogous to Figures 2 and 3, but for combinations of 1θ  and 2θ  
for which 2 1 1.5.θ θ= +  As in the previous two figures, FITU had TPR superior to that of FI in all 
72 comparisons. For the former procedure, the TPR ranged from 95.2% to 100%, with a median 
of 99.7% (IQR from 98.9% to 100.0%), whereas for the latter procedure, the TPR ranged from 
64.8% to 99.9%, with a median of 91.8% (IQR from 84.0% to 95.9%). The difference in TPR 
between FITU and FI had a minimum of 0.1%, a maximum of 32.5%, and a median of 8.0% (IQR 
from 4.0% to 14.4%). As in Figure 3, the difference between procedures tended to be greater at 
lower levels of θ than at higher levels, particularly in conditions in which there was a positive 
correlation between 1θ  and τ  (Conditions 1, 3, 5, and 7; see Figure 4). 
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Figure 1. FPR of AMC When Using FI and FITU  
Item Selection Criteria, by Condition and Value of 1 2θ θ=  
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Figure 2. TPR of AMC When Using FI and FITU  
Item Selection Criteria, by Condition and Value of 1θ  with 2 1 0.5θ θ= +   

 Fisher information               Fisher information per time unit 
Condition 1 

 

Condition 2 

 

Condition 3 

 
Condition 4 

 

Condition 5 

 

Condition 6 

 
 Condition 7   
 
 
 
 
 
 
 
 
 

Condition 8 
 

  



 

 
27 |  | JCAT  Vol. 7 No. 2     September 2019 

Figure 3.  TPR of AMC When Using FI and FITU  
Item Selection Criteria, by Condition and Value of 1θ  with 2 1 1.0θ θ= +   
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Figure 4.  TPR of AMC When Using Fisher Information and Fisher Information  
per Time Unit Item Selection Criteria, by Condition and Value of 1θ  with 2 1 1.5θ θ= +  
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Discussion and Conclusions 
The goal of this research was to propose the use of the Fisher information per time unit item 

selection procedure within the context of AMC and compare it to Fisher information item selection 
in simulation. The former criterion exhibited greater TPR than the latter in all comparisons for 
which 1 2θ θ≠  (216 comparisons in total when pooling the results of Figures 2 through 4). It also 
exhibited a lower (superior) FPR in more than 90% of the comparisons in which 1 2.θ θ=  Perhaps 
more surprising than the direction of the difference between the two item selection procedures is 
the magnitude of the difference. For both the set of comparisons in which 2 1 0.5θ θ= +  and those 
in which 2 1 1.0,θ θ= +  the median improvement in TPR from using Fisher information per time 
unit was more than 10% (with medians of 13.5% and 16.6%, respectively). For the latter set (in 
which 2 1 1.0),θ θ= +  the gain in TPR was greater than 10% in over three-quarters of comparisons, 
was greater than or equal to 24% in one-quarter of comparisons, and reached nearly 40% at its 
maximum. Regarding comparisons in which 2 1 1.5,θ θ= +  the median improvement in TPR from 
using Fisher information per time unit was lower, yet still substantial, at 8%, with a gain greater 
than or equal to 14% in over one-quarter of comparisons and a maximum gain of more than 30%. 

In comparisons in which there was large individual change between occasions, the difference 
between procedures tended to be greater at lower levels of θ than at higher levels in conditions in 
which there was a positive correlation between 1θ  and .τ  This pattern was due, at least in part, to 
a ceiling effect: The Fisher information per time unit procedure often exhibited TPR close to 100% 
in cases with large individual change, even in the scenarios where θ was low (for which it was 
more challenging to achieve high TPR in conditions with a positive correlation between 1θ  andτ
because, by definition, such a correlation implied that simulees with lower θ tended to answer 
items more slowly, and thus answered fewer items within the time limit). As θ increased, the 
simulees’ speed tended to increase, yielding more answered items and therefore greater TPR for 
the Fisher information criterion, whereas the Fisher information per time unit criterion could not 
appreciably increase its TPR given that its TPR was already close to 100%.  

In sum, the findings suggest the utility of the Fisher information per time unit item selection 
procedure in AMC contexts in which greater TPR to detect change is desired and time is of the 
essence. In the fields of medicine and psychology, the importance of the measurement of 
individual change has been well documented (Brouwer et al., 2013; Hays et al., 2019; Hung et al., 
2019; Kashikar-Zuck et al., 2016; Kruyen et al., 2014; Wang & Weiss, 2018), and efficiency might 
be particularly critical when assessment is performed more than once, given the limited time of 
respondents and providers (Kruyen et al., 2014; Smits et al., 2012). In education, the determination 
of a given student’s improvement, decline, or stasis over time is fundamental information for the 
student as well as for parents and teachers (Wang & Weiss, 2018; Weiss & Von Minden, 2011); 
and the efficiency of assessment is again crucial when, for example, testing is conducted in the 
classroom setting.  The focus of the present study was on the use of AMC with the 3PL model, 
which is frequently used in educational applications. However, the AMC procedure can be used 
with any IRT model because all that it requires is MLEs of θ which can be computed for an 
examinee’s responses to any set of items with estimated item parameters at each measurement 
occasion. 
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The reason that Fisher information per time unit increased the TPR as compared to only Fisher 
information is that the former considers the element of time in the item selection process. As noted 
by Fan et al. (2012), the selection of items that provide high information relative to the amount of 
time that they take results in greater time efficiency in the collection of information. In particular, 
compared to an item selection procedure (such as Fisher information) that does not consider the 
expected time taken by a candidate item, Fisher information per time unit tends to administer more 
items within a given time frame. Through these additional items, it is able to amass more 
cumulative information in the same amount of time. As the current study imposed a common time 
limit for the two item selection procedures at each occasion, the Fisher information per time unit 
criterion achieved greater total information, through the administration of more items, before time 
expired at each occasion. This enhanced cumulative information translated into greater TPR.       

To perform item selection via Fisher information per time unit, it is necessary to account for 
the expected time taken on an item. In the current research (as well as previous research outside of 
the AMC context; Fan et al., 2012), van der Linden’s (2006) lognormal model was utilized as an 
example, for which the denominator of Equation 7 or, equivalently, the denominator of Equation 
8 is used to quantify the expected time. The Fisher information per time unit procedure could easily 
be paired with a different response-time model; the expected time required for an item would 
merely be calculated with respect to that other model. Response times can follow different 
distributions in different contexts (Balota & Yap, 2011); for instance, the distribution of response 
times in psychological assessment settings might differ from the distribution in high-stakes 
educational testing settings, due to potential differences in the cognitive processes and motivations 
operating in those respective settings. Even within a given field, the distribution of response times 
can vary by test and population. Commonly found response-time distributions, other than the 
lognormal distribution, include the exponential distribution (Scheiblechner, 1979) and the Weibull 
distribution (Rouder, Sun, Speckman, Lu, & Zhou, 2003), among others.  

When a response-time model is used, care should be taken to select a model that exhibits strong 
empirical evidence of fit in the testing context. When a parametric model does not fit the empirical 
response-time distribution well, a semi-parametric model that has weaker assumptions could be 
used instead (e.g., Wang, Chang, & Douglas, 2013; Wang, Fan, Chang, & Douglas, 2013). Also, 
as mentioned previously, Cheng et al. (2017) provided a version of information per time unit that 
does not require the fitting of a response-time model, and the time-based item selection procedure 
discussed in the present study can be used within their framework. As the desire to obtain time-
efficient information might be present in educational, psychological, and medical assessment, and 
respondents might tend to answer some items more quickly than others in any of these contexts 
(differences in cognitive processes and motivations notwithstanding), Fisher information per time 
unit might prove to be a valuable tool to gain information quickly in CAT applications including 
diverse uses of AMC.  

The simulation study of the present research included conditions in which the item difficulty 
parameter was positively correlated with the time-intensity parameter. As pointed out by Cheng et 
al. (2017), the difficulty parameter is also frequently positively correlated with the discrimination 
parameter. Hence, the ,ja ,jb  and time-intensity parameters might all be positively associated; and 
in fact, Cheng et al. did find a positive correlation between such parameters empirically. Further 
simulation studies in which the correlation matrix of these parameters includes only positive values 
might be realistic and illuminating. In particular, it is well known that the Fisher information item 
selection procedure tends to select items with high discrimination; however, if such items also 
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exhibit high time intensity, the Fisher information per time unit procedure might select these items 
less frequently. A comparison of the current simulation study with a study in which all three of the 
aforementioned parameters are correlated would provide insight into the scenarios in which Fisher 
information and Fisher information per time unit perform similarly, and those in which they 
perform differently.  

Although the primary objective of the research was not to evaluate the likelihood-ratio test, an 
important secondary finding was that the FPR of this hypothesis test frequently exceeded the 
nominal rate of 5% in the context of AMC. In fact, when Fisher information was used as the item 
selection procedure, the FPR was greater than the desired 5% in all conditions studied, with a 
median of 7.7%. When Fisher information per time unit was employed, the median FPR was 
reduced to 5.8%, and sometimes fell to 5% or lower, yet remained greater than its nominal rate in 
the majority of conditions. Although Fisher information per time unit thus achieved an 
improvement in the FPR of the likelihood-ratio test, practitioners of AMC should be aware of this 
test’s potential tendency to result in false positives at a proportion above the nominal rate. 

One limitation of the study is that it used simulated data that followed the IRT model and 
response-time model; robustness to model misspecification was not explored. Additionally, as 
there were a total of 288 combinations of 1,θ  2 ,θ  and the study conditions (9 values of 1θ × 4 
values of 2θ  per value of 1θ  × the 8 conditions of Table 2), further conditions were not explored. 
For instance, conditions with content balancing and exposure control were not simulated. The use 
of these features of CAT is frequently necessary, particularly in the context of high-stakes 
educational assessment (Leung, Chang, & Hau, 2003). Content balancing might be a key 
requirement when the same respondent is measured on multiple occasions because of the desire 
for standardization between occasions. In particular, if a respondent exhibits significant change 
from Occasion 1 to Occasion 2, it is important to be able to attribute such change to growth (or 
decline) in that respondent, and not to differences in content between the two test occasions. 
Further research examining the item selection procedures studied here in conjunction with content 
balancing (as well as exposure control) would be illuminating.  

Also, as in previous AMC research (Finkelman et al., 2010; Kim-Kang & Weiss, 2008), the 
current study did not examine the case in which an item was barred for selection for a respondent 
at Occasion 2 if it had been administered to the respondent at Occasion 1. In many assessment 
settings, it would be necessary in practice to ensure that the same item is not administered to a 
respondent on more than one occasion. Particularly in high-stakes educational testing (although in 
other contexts as well), it would be undesirable to present a given item to a respondent more than 
once (even on different occasions), as the answer at Occasion 2 could be influenced by the 
respondent’s having been administered the item at Occasion 1. For example, if a respondent 
answered an item incorrectly at Occasion 1, was motivated to find out the answer to that specific 
item, and then was administered the same item at Occasion 2, the respondent’s θ  estimate at 
Occasion 2 could be falsely inflated. Studying different item selection criteria under a constraint 
requiring each item to be administered a maximum of one time across all testing occasions would 
be instructive.  

Future studies investigating the factors and scenarios listed above are warranted, as are studies 
using additional item banks and time limits. For example, in the current study, discrimination 
parameters were generated from the normal distribution with a mean of 1.5 and a standard 
deviation of 0.15, corresponding to the high discrimination condition of Kim-Kang and Weiss 
(2008). Further studies could generate the discrimination parameters from the lognormal 
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distribution and/or utilize other means and standard deviations, such as using a mean of 0.5 or 1.0 
(corresponding to the low discrimination and medium discrimination conditions, respectively, of 
Kim-Kang and Weiss). Finally, as in Fan et al. (2012), the estimation of θ was based only on 
simulees’ item responses, not their response times. However, it might be possible under certain 
circumstances to enhance the precision of θ estimation by incorporating information about an 
examinee’s response times, which might be correlated with ability, into the θ  estimate (e.g., van 
der Linden, Klein Entink, & Fox, 2010). Such “borrowing strength” of information between ability 
and speed could be combined with the methodology proposed herein for AMC. All of these topics 
will be studied in future research to further address the goal of obtaining time-efficient information 
about examinees’ individual change.  
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