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Standard computerized adaptive testing (CAT) methods require an underlying item response 
theory (IRT) model. An item bank can be constructed from the IRT model, and subsequent 
items can be selected with maximum information at the examinee’s estimated ability level. IRT 
models, however, do not always fit test data exactly. In such situations, it is not possible to 
employ standard CAT methods without violating assumptions. To extend the scope of adaptive 
testing, this research shows how latent class analysis (LCA) can be used in item bank construc-
tion. In addition, the research investigates suitable item selection algorithms using Kullback-
Leibler (KL) information for item banks based on LCA. The KL information values can be 
used to select items and to construct an adaptive test. Simulations show that item selection 
based on KL information outperformed random selection of items in progress testing. The ef-
fectiveness of the selection algorithm is evaluated, and a possible scoring for the new adaptive 
item selection with two classes is proposed. The applicability of the methods is illustrated by 
constructing a computerized adaptive progress test (CAPT) on an example data set drawn from 
the Dutch Medical Progress Test. 
 
Keywords: Latent class analysis, computerized adaptive progress test, Kullback-Leibler infor-
mation, item selection method, log-odds scoring 
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Three aspects of using latent class analysis (LCA) in computerized adaptive tests (CATs) 
are addressed in this research: item bank construction, item selection, and a possible scoring 
procedure. Each is illustrated with an example data set drawn from the Dutch Medical Progress 
Test. The research investigates the feasibility of developing a CAT using items that do not 
correspond exactly to an item response theory (IRT) framework when applying the proposed 
latent-class-based algorithms for CAT. The selection algorithm makes use of Kullback-Leibler 
(KL) selection methods, which have previously been applied for other purposes such as CATs 
for cognitive diagnosis (Cheng, 2009). 

Standard CAT 

CAT normally refers to methods of testing in which each subsequent item is the item with 
the maximum Fisher information for examinee’s estimated latent ability, θ



. This means that 
each examinee takes a tailored version of a test drawn from a certain bank of items. The devel-
opment and application of CAT has increased over recent decades, and several educational 
institutions and testing centers have integrated adaptive methods into their tests (Weiss & 
Kingsbury, 1984; Van der Linden & Veldkamp, 2004; Thompson & Weiss, 2011). CAT has 
many advantages for both examinees and evaluators. These advantages are mainly expressed 
in terms of efficiency and a better user test experience, as the questions are tailored to an indi-
vidual’s ability level (Eggen, 2008). 

Misfit in IRT Models 

 In some situations, however, the standard IRT framework that underlies CAT does not fit 
the data, for example, during the calibration phase when building a CAT. Global fit of the IRT 
models to an item bank can be tested by looking at global fit measures such as the Q1 test, R1 

test, and/or likelihood ratio tests (Andersen, 1973; Suárez-Falcón & Glas, 2003). These testing 
methods for global model fit can be first pointers to misfit. Concerns raised by global indica-
tions of misfit can be caused by violations of one or more assumptions of the IRT model. Item 
response functions can be flat instead of S-shaped, and problems with assumed local independ-
ence and unidimensionality can occur (Yang & Kao, 2014).  
 If many items from the item bank show misfit, constructing an item bank might be impos-
sible or only possible with heavy violations of the assumptions of standard IRT models. In 
these cases, other models can be applied to the data, such as multidimensional IRT models or 
latent variable mixture models. Multidimensional IRT can be modeled when multiple con-
structs in the data disturb the model fit (Béguin & Glas, 2001). Latent variable mixture model-
ing is useful in populations with heterogenous rather than homogenous samples (Sawatzky, 
Ratner, Kopec, Wu, & Zumbo, 2016). Sometimes, however, these other IRT models do not fit 
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specific types of items. This research, therefore, explores the opportunities for applying and 
adapting current methods and models for CAT if the existing alternatives to standard IRT in 
CAT do not work.  

Research on LCA and CAT  

The present research appears to be the first to propose LCA in combination with CAT in 
an actual testing situation. Macready and Dayton (1992) investigated the use of LCA in CAT, 
concluding that the combination of CAT with LCA allows for conceptually simpler models 
than CAT with IRT. Macready and Dayton also acknowledged that LCA has fewer untestable 
assumptions. Their goal was to classify respondents into the appropriate latent class with CAT 
and to obtain an acceptable level of error.  

Later, Cheng (2009) used LCA models and proposed an item selection method for CAT 
based on KL information, which was used in this research. However, the focus of Cheng’s 
application was on cognitive diagnostic computerized adaptive testing (CD-CAT). This 
method aims to classify examinees into latent classes, whereas the progress tests aim to com-
pare students within and across certain classes after being classified in a latent class.  

Xu, Chang, and Douglas (2003) were the first to propose item selection algorithms for CD-
CAT, and Cheng has extended these methods. Other research on CD-CAT is that of Wang, 
Chang, and Douglas (2012). They identified an effective item selection algorithm for CAT that 
not only efficiently estimates θ  but also classifies the student’s knowledge status based on a 
Q-matrix. The KL item selection method, which has been used in other research (Chen & 
Ankenman, 2004; Mulder & Van der Linden, 2009; Eggen, 2012), would probably be highly 
valuable in situations where standard IRT models do not fit the data. To determine whether the 
method is truly beneficial, these methods were tested in the present research by constructing 
and evaluating a computerized adaptive progress test (CAPT). 

Progress Data and Misfit 

Progress tests are longitudinal educational assessments that are intended to measure learn-
ing outcomes over the course of learning processes (Tio, Schutte, Meiboom, Greidanus, Du-
bois, Bremers, & the Dutch Working Group of the Interuniversity Progress Test of Medicine, 
2016). Medical progress test data from Dutch universities are used as an example throughout 
this paper. Progress testing usually involves a large number of items, which are administered 
to all students irrespective of their stage in the curriculum. In the medical progress test, the 
students in the beginning stage of the curriculum are typically able to answer only a few items 
correctly (Wrigley, Van der Vleuten, Freeman, & Muijtens, 2012). Therefore, the application 
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of a CAT framework to items in a progress test could be beneficial in terms of efficiency and 
improved experience for students.  
   Standard IRT models do not always fit the data of progress tests. In the calibration phase, 
it was difficult to fit all items onto one IRT scale because global fit indices, as well as many 
item-specific indicators, showed misfit. Upon closer inspection, it appeared that a large number 
of the items behaved unexpectedly by showing a “jump” in probability at a certain point in 
time. When looking at the instruction program of one university, this jump usually coincided 
with the moment of instruction of the topic. Following this moment of instruction, the 
knowledge of all students immediately changed; however, this was not necessarily associated 
with their θ  level. In addition, it appears that for most of these items, the knowledge that had 
been gathered did not always grow in the remaining years of study. An example of one of the 
items with misfit can be seen in Figure 1. 

Figure 1. Mean Percentage of Correct Responses  
on One Jump-Type Item from the 2005 Dutch Medical  

Progress Test Over the Study Years 

 

A mix of two item types can occur in progress test data: (1) jump-type items and (2) items 
that can be scaled correctly on an IRT scale without misfit. This can lead to a mix of items that 
become easier for students with higher ability levels and items that are easier or more difficult 
at a certain point in time due to the moment of education. The former type of items generally 
fit into an IRT framework, whereas the latter type disturbs the general assumption of higher 
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ability associated with a higher probability of answering items correctly. The moments of in- 
struction differ over universities, causing the order of difficulty of items to change over uni-
versities and study years. The assumption of constructing a population model is not only vio-
lated in multidimensional IRT models but also in latent variable mixture models. Introducing 
multiple constructs and correcting for heterogeneous samples do not overcome this violation. 

The standard IRT-based methods can show misfit for progress test data and are not appli-
cable in all testing situations. Therefore, this paper demonstrates a latent-class-based item se-
lection method for progress test items and evaluates the performance of this selection method 
and algorithm in CAPT simulations. The item selection in the test is based on KL information. 
An illustrated example of the selection algorithm is given by building an item bank and per-
forming CAPT simulations for the Dutch Medical Progress Test, which has been a standard 
paper-and-pencil test for many years (Schuwirth, Bosman, Henning, Rinkel, & Wenink, 2010). 
Finally, this paper proposes and evaluates a log-odds scoring method based on posterior class 
probabilities. 

Background 

Item Response Theory and CAT 

Typically, methods used to construct a CAT first fit a model from IRT to the data in order 
to construct a calibrated item bank (Embretson & Reise, 2000). Using the estimated parameters 
from these IRT models, tailored item selection is possible for each examinee. Two examples 
of applying IRT models to a set of items are fitting a one-parameter logistic model, which was 
first proposed by Rasch (1960), or fitting a two-parameter logistic model (Wainer, 2000).  
  After item bank calibration, an item selection algorithm is applied to continue the construc-
tion of the adaptive test. A strategy for selecting the next item in a test, given an estimate of 
ability, 𝜃𝜃𝚤𝚤� , and based on the previous responses of examinee i, is a method that selects the item 
providing maximum information (Van der Linden & Glas, 2000). This method chooses an item 
j*, with possible values 𝑗𝑗 = 1, . . . , 𝐽𝐽, which maximizes the item information at the estimated 
ability level 𝜃𝜃𝚤𝚤�  of the examinee, as follows: 

 

𝐼𝐼𝐼𝐼�𝜃𝜃𝚤𝚤�� =
[𝑃𝑃′𝑗𝑗�𝜃𝜃𝚤𝚤��]2

�𝑃𝑃𝑗𝑗′�𝜃𝜃𝚤𝚤���1 − 𝑃𝑃𝑗𝑗′�𝜃𝜃𝚤𝚤����.
 

 

 
   (1) 

 
In this equation, 𝑃𝑃𝑗𝑗′�𝜃𝜃𝚤𝚤�� is the probability of a correct response to item j from the calibrated 
item bank for examinee 𝑖𝑖 at a current 𝜃𝜃𝚤𝚤� . Each computerized adaptive test also needs a stop-  
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ping rule. For example, the adaptive test could be terminated after a fixed number of items or 
when a certain precision level has been reached (Wang, Chang, & Boughton, 2013). The deci-
sion on a stopping rule depends on many factors and can result in either a fixed-length or var-
iable-length test.  

The Dutch Medical Progress Test 

 In five of the eight medical schools in the Netherlands, a medical progress test is admin-
istered quarterly for all students. All first- to sixth-year students answer the same 200 items on 
various medical topics in a paper-and-pencil format. According to Schuwirth et al. (2010), “the 
longitudinal feature of the progress test provides a unique and demonstrable measurement of 
the growth and effectiveness of students’ knowledge acquisition.” The goal of the test is to 
monitor the progress of students throughout the course of the medical program. Data from the 
Dutch Medical Progress Test over seven subsequent years (2005 to 2011) were used in this 
research to illustrate the use of the proposed latent-class-based item selection algorithm and its 
efficacy in simulations of the CAPT. 

Item Bank 

The data from the Dutch Medical Progress Test used for this research consisted of re-
sponses from all the medical students at five universities. The sample involved the December 
versions of the tests from 2005 to 2011. Consequently, a total of 1,400 different items were 
available for possible selection in the item bank for CAPT. None of the 1,400 items occurred 
more than once in the tests. Over the years 2005 through 2011, the sample sizes differed be-
tween a minimum of N = 5,318 students in 2005 and a maximum of N = 7,001 in 2008. It is 
assumed that students participating in the December tests had the same ability distribution over 
the years, meaning that new respondents would be acceptable substitutes for respondents leav-
ing the sample.  
  Data analyses provided relevant information regarding performance on the items for stu-
dents in different years of their medical studies. Over the study year groups, the probability of 
answering an item correctly increased gradually for some items, while for other items a clear 
jump could be observed in subsequent years. This jump could have many causes. For instance, 
the moment at which students have been taught and/or the origin of the knowledge or skill 
tested by the item could be of influence. A “jump-type item” was defined as an item that 
showed an increase of at least .30 in the mean probability of being answered correctly over two 
subsequent study year groups. For example, the growth in mean probability must be observed 
between Study Year 1 and 2 or between Study Year 4 and 5. In the data set, 208 of the 1,400 
item total could be classified as jump-type items.  
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“Grow-type” items seemed to follow an IRT model in item bank calibrations. Jump-type 
items, however, violated some of the IRT assumptions, such as monotonicity and invariance 
of item parameters and the latent ability across different universities and study years. It was 
hypothesized that LCA could be an alternative to IRT in this case as well as in other cases 
where IRT does not fit. LCA provides a classification of students instead of a θ  estimate on a 
continuous scale; this classification can also provide valuable information in addition to an IRT 
model or as a substitute for a continuous outcome. 

Using LCA Outcomes  

IRT models estimate the ability of the student on a continuous latent scale. This research 
proposes another option, namely, the path of classification and probabilistic information on 
class memberships. This means that in constructing an item bank with LCA, students are first 
clustered into a certain number of classes, which are restricted as follows: The best students 
are in Class 1, and the least able students are in the highest class, depending of the number of 
classes in the solution. Being a member of a certain latent class corresponds to a certain 
probability of answering an item correctly.  

This probabilistic information can be used to calculate the latent class membership proba-
bilities for each class and can be highly informative. In practice, there are three options for 
using the outcome of a CAT based on LCA when constructing tests. First, the latent class 
membership outcome can simply be used as a classification. Second, classification information 
can be used in addition to a standard 𝜃𝜃� estimation coming from IRT. Finally, the probabilistic 
outcomes on the class membership can be used to provide information about the ability of the 
student.  

Latent Class Analysis 

LCA is a method of analysis in which observable or manifest variables are related to unob-
servable or latent variables (Lazarsfeld & Henry, 1968). Both the observed and unobserved 
variables in this model are assumed to be categorical. This attribute is the essential difference 
when compared to psychological measurement models such as IRT. In IRT, the observed 
variables would also be categorical, but the underlying latent variable would be continuous. 
Essentially, LCA models provide a probabilistic or fuzzy outcome with respect to predicted 
class membership, whereas IRT models give a scaled latent estimate on a continuous trait.  
  In a latent class model, examinees within the same latent class have common characteristics 
with regard to certain criteria, and examinees in different latent classes are dissimilar from each 
other. In LCA, parameters are estimated for class profiles and the size of each class. For 
multiple dichotomous items, the predicted latent class memberships P(𝐶𝐶 = 𝑐𝑐|𝐱𝐱𝑖𝑖) can be cal-  
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culated given the observed answer pattern 𝐱𝐱𝑖𝑖 = (𝑥𝑥𝑖𝑖1 , … , 𝑥𝑥𝑖𝑖𝑖𝑖) of an examinee 𝑖𝑖  (Dayton, 
1998). This holds for dichotomous items, where 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1}, and 𝑖𝑖 = 1, . . . ,𝑁𝑁 for the persons 
and 𝑗𝑗 = 1, . . , 𝐽𝐽 for the items. A latent class is notated as 𝐶𝐶, with 𝑐𝑐 = 1, . . . , T𝑐𝑐, with 𝑇𝑇𝑇𝑇 be-
ing the total number of latent classes. The joint probability of obtaining a certain response 
pattern 𝐱𝐱𝑖𝑖 would then be 
 

( ) ( )
1 1

P   P 1| ,
Tc J

i c ij
c j

x C cπ
= =

= = =∑ ∏x  
 
  (2) 
 

where 𝜋𝜋𝑐𝑐 indicates the proportion of students that belong to class C. The assumption of local 
independence can be recognized in Equation 2 because the J observed items are assumed to be 
mutually independent within each class C. An interesting aspect of this research and the use of 
LCA is that the model solutions assign students to a latent class with a certain probability. The 
estimated class probability for each individual to belong to a class C, given person i’s answer 
pattern 𝐱𝐱𝑖𝑖, is 

 

P(𝐶𝐶 = 𝑐𝑐|𝐱𝐱𝑖𝑖) =
P(𝜋𝜋𝑐𝑐)P(𝐱𝐱𝑖𝑖|𝐶𝐶 = 𝑐𝑐) 

P(𝐱𝐱𝑖𝑖)
,   (3) 

 
which is referred to as a posterior probability. For example, a correct answer to an item for a 
person would result in the following expression:  
 

P�𝐶𝐶 = 𝑐𝑐�𝑥𝑥𝑖𝑖𝑖𝑖 = 1� =
P(𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝐶𝐶 = 𝑐𝑐)𝜋𝜋𝑐𝑐 

P(𝑥𝑥𝑖𝑖𝑖𝑖 = 1)
.   (4) 

 
In LCA, each student with an observed response pattern 𝐱𝐱𝑖𝑖 would belong to each of the 

classes with a certain probability. When the goal of the latent class analysis is person classifi-
cation, as is the case in this application, the most commonly used classification rule is modal 
assignment. This rule (Hagenaars & McCutcheon, 2002) dictates that the examinee will be 
assigned to the class with the highest P(𝐶𝐶 = 𝑐𝑐|𝐱𝐱𝑖𝑖). Restrictions can be applied to LCAs and 
may be necessary when constructing an item bank with items from non-overlapping examinees.  
  Latent Gold 4.5 software (Vermunt & Magidson, 2000; Haughton, Legrand, & Woolford, 
2009) was used for the LCA analyses in this research. Several indices can be considered in 
drawing conclusions about how many classes are required to give the best fit to the data and to 
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determine optimum class sizes. One index measure and global fit index is the −2 log likeli-
hood (−2LL), which compares several models with varying numbers of classes (Nylund, As-
parouhov, & Muthén, 2008). Another fit index is the Bayesian information criterion (BIC; 
Schwartz, 1978), which is regarded as a good indicator for distinguishing between models with 
varying numbers of latent classes (McCutcheon, 1987; Vermunt & Magidson, 2000; Hagenaars 
& McCutcheon, 2002). The BIC is defined as  

 
𝐵𝐵𝐵𝐵𝐵𝐵 = −2 log 𝐿𝐿  + 𝑝𝑝 log(𝑁𝑁),   (5) 

 
where 𝑝𝑝 is the number of free model parameters and 𝑁𝑁 represents the sample size. This in-
formation criterion also uses −2LL but adjusts for the number of parameters and the sample 
size in the model, resulting in improved index reliability (Nylund et al., 2008). 

Restrictions 

The data from the Dutch Medical Progress Test are not linked, which means students can-
not be identified over the years. The unlinked design implies a few restrictions when construct-
ing the item bank by applying LCA. The linking of the data and fitting latent class models for 
each year can be done by determining the optimal number of latent classes over the years and 
fitting LCA models to them. Next, a group-specific latent class model can be fitted by imposing 
a restriction on class sizes, which means that class size in each latent class model over the years 
must be equal. This model then has the following notation: Group refers to the year of the test 
and is indicated by 𝑔𝑔 ∈ {1, … ,𝐺𝐺}, and an item is indicated by 𝑗𝑗 ∈ {1, … , 𝐽𝐽𝑔𝑔}, with 𝐽𝐽𝑔𝑔 being 
the total number of items in group 𝑔𝑔. This leads to the following extension of the joint prob-
ability formula: 

 

P(𝑥𝑥𝑖𝑖1
(𝑔𝑔), … , 𝑥𝑥𝑖𝑖𝑖𝑖

(𝑔𝑔)) =  �𝜋𝜋𝑐𝑐
𝑔𝑔

𝑇𝑇𝑇𝑇

𝑐𝑐=1

�P�𝑥𝑥𝑖𝑖𝑖𝑖
𝑔𝑔 = 1�𝐶𝐶 = 𝑐𝑐�.

𝐽𝐽𝑔𝑔

𝑗𝑗=1

 
 
  (6) 

 
When separate models have been estimated and the optimal number of latent classes has 

been determined, the mean 𝑃𝑃�𝑐𝑐  can be found by calculating the average class size over all 
groups 𝑔𝑔 with 
 

1

1  
Tc

g
c c

c

P
G

π
=

= ∑  
 
 (7) 

for all latent classes ∈ {1, … ,𝑇𝑇𝑇𝑇}.  
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Kullback–Leibler Selection Algorithm 

 The proposed item selection algorithm for item banks based on LCA makes use of KL 
information. The general form of KL information (Kullback & Leibler, 1951; Cover & 
Thomas, 1991) between two probability distributions is expressed as  

 

𝐷𝐷[𝑓𝑓,𝑔𝑔] = 𝐸𝐸𝑓𝑓 �log
𝑓𝑓(𝐱𝐱)
𝑔𝑔(𝐱𝐱)

�. 
 

   (8) 

 
The probability distribution 𝑓𝑓(𝐱𝐱) would usually represent the “true” distribution of the data, 
or a precise theoretical distribution. Normally, 𝑔𝑔(𝐱𝐱) would be the representation of a model 
or an approximation of 𝑓𝑓(𝐱𝐱). Therefore, it reflects a distance or divergence between these two 
distributions.  

Note that it is not a distance in mathematical terms, as the measure is not symmetric with 
𝐷𝐷[𝑓𝑓,𝑔𝑔] ≠ 𝐷𝐷[𝑔𝑔, 𝑓𝑓]. Large KL information values of 𝐷𝐷[𝑓𝑓,𝑔𝑔] would be an indication of two 
statistically different distributions, indicating deviances between the two (Cheng, 2009). Al-
though several terms are used in the literature—such as KL distance, KL divergence, and KL 
information―the latter term is used here. 
  Cheng (2009) has proposed an application of the KL algorithm that helps select items in 
order to improve cognitive diagnosis. The focus on cognitive diagnosis is to classify persons 
into cognitive profiles, 𝑎𝑎𝑖𝑖. The true state of a person’s attribute profile is unknown. Therefore, 
the KL information of the conditional distribution of response pattern 𝐱𝐱𝑖𝑖, given the current 
estimate of person 𝑖𝑖’s latent cognitive diagnosis state and the conditional distribution of 𝐱𝐱𝑖𝑖, 
given other latent cognitive diagnosis states, can be measured. When applying KL information, 
it can be calculated between 𝑓𝑓( 𝐱𝐱𝑖𝑖| 𝑎𝑎𝚤𝚤

(𝑡𝑡)�  ), with 𝑎𝑎𝚤𝚤
(𝑡𝑡)�  indicating the current estimate of 𝑎𝑎𝚤𝚤�  , and 

another distribution based on 𝐱𝐱𝑖𝑖 , given another latent state 𝑎𝑎𝑐𝑐: 
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  (9) 

 
Equation 9 can be used for models with two latent states. However, if more than one alternative 
latent state is available, the sum of the KL information between the estimated current latent 
state 𝑎𝑎𝚤𝚤

(𝑡𝑡)�  and all other latent states 𝑎𝑎𝑐𝑐 could be used (Xu, Chang, & Douglas, 2003): 
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Item selection would then follow, based on the aim of finding the item with the maximum 
𝐾𝐾𝐾𝐾𝑗𝑗 �𝑎𝑎𝚤𝚤

(𝑡𝑡)� � for an examinee in a specific latent state. Based on the maximum KL information 
of an item, given the current estimate of the latent state, the (𝑡𝑡 + 1)𝑡𝑡ℎ item will be chosen. If 
there are two latent states, summing the KL information using Equation 10 is not necessary.  
  Cheng (2009) also proposed extensions of the KL information described above, one of 
which is posterior weighted KL information (PWKL). The PWKL could incorporate infor-
mation about old samples into the analysis of current samples with the help of prior infor-
mation.  

Simulations of CAPTs 

Method 
In each simulated CAPT, 150 examinees per latent class were assigned to their “true” latent 

state. Thus, the two-class LCA solution simulation tested the efficacy of reclassifying 300 ex-
aminees based on the simulated response patterns, whereas the three-class solution tested the 
classification accuracy for 450 examinees. Item responses were generated based on item re-
sponse probabilities, given the “true” class to which the examinee belonged. Replication of 
these simulations, 50 per setting, made it possible to draw conclusions about variances in 
various test situations. 
  A random generator from the uniform distribution with 𝑑𝑑 ∼  U(0,1) was used to simulate 
these answer patterns. A total of 𝐷𝐷 uniformly distributed numbers were drawn from this dis-
tribution for each of the 50 replications. The 208 jump-type items in the databank and the LCA 
two-class and three-class solutions based on these items had the estimated probabilities 
P(𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝐶𝐶 = 𝑐𝑐). To generate answer patterns, the probabilities P�𝑥𝑥𝑖𝑖𝑖𝑖 = 1�𝐶𝐶 = 𝑐𝑐� , as cali-
brated from the LCA, were compared to the boundary values 𝑑𝑑,  

 

where 𝑥𝑥𝑖𝑖𝑖𝑖 �
0 for P�𝑥𝑥𝑖𝑖𝑖𝑖 = 1�𝐶𝐶 = 𝑐𝑐� ≥  𝑑𝑑𝑖𝑖𝑖𝑖
1 for P�𝑥𝑥𝑖𝑖𝑖𝑖 = 1�𝐶𝐶 = 𝑐𝑐� < 𝑑𝑑𝑖𝑖𝑖𝑖

. 

 
Response patterns conditioned on latent class membership were generated in the statistical pro-
gram R (version 3.2.2 for Windows). 

The simulated answer patterns were then again used to estimate the latent class member-
ship. In contrast this time only, a subset of the item responses were used to estimate class mem- 
berships. The idea of the CAPT is to use fewer items than in the current 200-item progress test 
and correctly predict the true latent class and latent ability of the examinees. Two methods of 
item selection were compared: (1) the baseline, which involved random selection of the items, 
and (2) the experimental setting, which was expected to increase the performance of the CAPT 
and in which the selection was based on KL information.  
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For each examinee, the random selection method generated a random vector of test length 
10, 15, or 20 out of the 208 jump-type items. The CAT selection method based on KL infor-
mation also generated tests of length 10, 15, and 20 for each examinee; but the items were 
chosen based upon the current class estimate 𝑎𝑎𝑖𝑖

(𝑡𝑡). After each question, the current estimate of 
class 𝑎𝑎𝑖𝑖𝑡𝑡 was used to choose the best-fitting item according to the KL information indices.  

The predicted latent class probabilities were updated after an item was administered; and 
the next item was then chosen by applying the modal classification rule, based on the largest 
KL information corresponding to the predicted latent state 𝑎𝑎𝑖𝑖𝑡𝑡. In contrast to the CAT with an 
underlying item response model, where the ability parameter on a continuous latent scale was 
used to select the optimal next item, the CAPT for the jump-type items used the categorical 
class membership estimate to select the next item. The items with the maximum amount of KL 
information contributed most to the correct classification of the examinees. 

Results 

Calibrating an item bank with LCA. Latent class models with varying number of classes 
were fitted to the medical progress test data in order to form classes of students. Table 1 
shows that the BIC of the four-class solution had the lowest value and seemed to fit the data 
best according to the fit indices. However, other fit measures also were examined in deciding 
on the best usable LCA solution. 

 
Table 1. BIC Values for One-Class to Five-Class  

Models Fit to the 2005 Test Data  

 
LCA Solution 

 
BIC 

Degrees of  
Freedom (df) 

Classification  
Errors 

One class 213171.81 5286 0.0000 

Two class 183986.86 5253 0.0201 
Three class 179148.47 5220 0.0537 
Four class 177943.63 5187 0.0961 
Five class 177994.03 5154 0.1038 

 
 
In this particular application of LCA, clear interpretation of students’ class membership 

was of high importance, as this was a variable of interest. Therefore, the ability of these solu- 
tions to distinguish between classes over the items provided the opportunity to explain mem- 
bership of Class 1 as generally more proficient in all topics, and the highest class as the least 
proficient.  
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For instance, Figure 2 shows that the four- and five-class solutions had many crossings, 
which made interpretation of the classes difficult. Figure 2 shows 14 items of Study Year Group 
1 on the x-axis. The mean probability of items being answered correctly for students belonging 
to one of the five classes is shown on the y-axis. 
 

Figure 2. The Profile Plot of 14 Items for the Five-Class LCA Solution 

 
 
The three-class solution in Figure 3 was better able to distinguish between classes, and the 

mean probabilities of answering correctly did not cross over items. The same held for the two-
class solution. These two LCA solutions were preferred for interpretability of the final out-
comes of the class membership. Therefore, both the latent two- and three-class analysis solu-
tions for the different study years (2005–2011) were used in the calibration and simulations for 
comparison. 

The proportion of students per class in the three-class solution can be used to calculate 𝑃𝑃�𝑐𝑐, 
which in turn can be used to estimate the restricted group LCAs. Latent class models were 
fitted separately per year, as the design was not linked. Table 2 shows the proportion of students 
in the three-class solutions for the different years of the tests.  

With the three values of 𝑃𝑃�c,for each Latent Class 1 through 3 shown in Table 2, the seven 
LCA models were again fitted with the restrictions on proportions of students per class. These 
models give results as conditional probabilities of answering items correctly, which can then 
be used as item information for an item bank with the three-class solution. Two final item banks 
were constructed — one for the two-class solution and one for the three-class solution — each  
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Figure 3. The Profile Plot of 20 Items for the Three-Class LCA Solution

 
with restrictions on group size. These item banks containing item and person information were 
used in the subsequent simulation study of adaptive test construction. 

Simulations of the Kullback–Leibler selection algorithm for CAPT. In the analysis, 150 
answer patterns 𝒙𝒙𝒊𝒊 per class 𝐶𝐶 were simulated for all 𝐽𝐽 items, conditional upon the students’ 
assumed class membership. Subsequently, an item selection algorithm constructed a test of 
length t. Using 𝒙𝒙𝒊𝒊, the class membership could be estimated again, although this time the class 

 
Table 2. Proportion of Students Per Latent Class  

in the Three-Class LCA Solution 

Group/Year Class 1 Class 2 Class 3 

2005 0.377 0.359 0.265 
2006 0.316 0.406 0.278 
2007 0.363 0.368 0.269 
2008 0.351 0.353 0.296 
2009 0.388 0.386 0.226 
2010 0.345 0.368 0.288 
2011 0.385 0.361 0.255 

𝑃𝑃�𝑐𝑐 0.361 0.372 0.268 
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prediction was based only on the t selected items out of the 𝑱𝑱 items. This procedure was repli-
cated 50 times per class and per selection method. To illustrate, for a two-class solution, 𝟐𝟐 ×
𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟓𝟓𝟓𝟓 = 𝟏𝟏𝟏𝟏,𝟎𝟎𝟎𝟎𝟎𝟎 answer patterns were generated containing answers to all 208 items in 
the bank.  
  Random and KL item selection were compared in terms of proportions of correctly classi-
fied students. To evaluate the possible effect of test length on the efficiency of the item selec-
tion method, the test length was varied with 10, 15, and 20 items for both methods. The effect 
of the two different selection methods on the efficiency of classification was of particular in-
terest not only for the two-class solution but also for the three-class LCA model. Note that in 
both solutions, Class 1 contained the students with the highest probability of answering the 
items correctly.  

The results of the simulation studies are shown in Table 3 in terms of the mean and standard 
deviation of the number of correctly classified students over the 50 replications for test lengths 
𝑡𝑡 = 10, 15, and 20. It can be seen that for both the two- and three-class solutions, the KL se-
lection of 10 items performed better with respect to correct reclassification as compared with 
random item selection. The two-class solution demonstrated a high proportion of correct clas-
sifications when KL information selection was used (𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 0.988,𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 0.999) , 
while the random selection did not perform as well (𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 0.940,𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 0.939). In 
addition, the standard deviations in the KL information selection were smaller in the two-class 
solution than in the three-class solution. 

Further, for the three-class solution, the KL information item selection method performed 
better than the random selection method in terms of correctly reclassifying respondents. Class 
2 was the most difficult class to predict for both selection methods. Class 1, which contained 
the best students, had the most correctly reclassified respondents. 

Table 3 also shows the results of the simulation with 15 items selected per simulated adap-
tive test. For both the random and KL information selection methods, the proportion of cor-
rectly classified respondents increased in comparison to the 10-item simulated adaptive test. 
Additionally, the standard deviations were smaller for all cells. For the three-class solution, the 
differences between the two selection methods decreased. 

Finally, for tests of 20 items the mean of the proportion correctly classified over the simu-
lations increased, while the standard deviations decreased. When more items were adminis-
tered, the random selection method reclassified examinees well (𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 = 0.986,𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 =
0.987) . However, the KL information showed nearly perfect classification (𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 =
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 = 0.999). 
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Table 3. Mean and Standard Deviation (SD) of Correctly Classified 
Students after 10, 15, and 20 Items for Two- and Three-Class Solutions 
Number of Items 
Solution, and Class 

Random KL 
Mean SD Mean SD 

10 Items: Two-Class Solution     
      Class 1 0.940 0.0212 0.988 0.0098 
      Class 2 0.939 0.0195 0.999 0.0078 
10 Items: Three-Class Solution     
      Class 1 0.867 0.0249 0.905 0.0272 
      Class 2 0.753 0.0323 0.819 0.0348 
      Class 3 0.863 0.0256 0.873 0.0344 
15 Items: Two-Class Solution     
      Class 1 0.971 0.0128 0.997 0.0047 
      Class 2 0.974 0.0117 0.996 0.0056 
15 Items: Three-Class Solution     
      Class 1 0.918 0.0213 0.948 0.0202 
      Class 2 0.848 0.0284 0.896 0.0226 
      Class 3 0.912 0.0221 0.922 0.0183 
20 Items: Two-Class Solution     
      Class 1 0.986 0.0095 0.999 0.0018 
      Class 2 0.987 0.0093 0.999 0.0028 
20 Items: Three-Class Solution     
      Class 1 0.947 0.0186 0.964 0.0128 
      Class 2 0.905 0.0251 0.933 0.0231 
      Class 3 0.941 0.0177 0.955 0.0165 

 
The results of the above experiment represent a successful test of the item selection method. 

It showed that KL information was generally better in estimating class membership than ran-
dom selection of items. The KL selection method outperformed the random selection method 
in both the two-class and three-class solution models, and the proportions of correctly specified 
students increased with test length. 

Scoring Based on Posterior Class Probabilities 
The difference between IRT and latent class models is primarily in the character of the 

latent outcome variable in the models. In latent class models, the unobserved outcome variable 
(ability indication) is categorical. An important question that can arise in practice, however, is 
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how to use this latent class membership and the corresponding probabilities to provide infor-
mation on the student’s ability. As indicated, three approaches are (1) to use just the class 
membership, (2) to use the classification in addition to a latent trait ability estimate, or (3) to 
calculate a score on a continuous scale from the LCA membership probabilities.  

Obtaining scores from the classification using a CAT that is based on latent class models 
comes with some difficulty. The issue that must be solved is how to score students based on 
their latent class membership. If the goal of the CAT is only to categorize into latent classes, 
the probability of being a member of a latent class can be used as substitute for a score. If the 
goal of the test is an outcome on a continuous score, the categorical outcome of the LCA will 
need to be transformed to a continuous scale.  

An interesting property of the latent class model is the probability distribution. Modal class 
assignment is used to classify students using the probabilities of belonging to the class, given 
the answer pattern. These probabilities of belonging to class 𝐶𝐶 can also be used to calculate a 
score on a continuous scale. The new method proposed here for the two-class solution is to 
calculate the log-odds for a student of the probability of belonging to Class 1 over Class 2, as 
follows: 

 

LogOdds =
log(P(C = 1|𝐱𝐱𝑖𝑖)
log(P(C = 2|𝐱𝐱𝑖𝑖)

.  (11) 

 
This notation of log-odds would be valid if all students answered the same questions. In an 

adaptive test, however, the tests are tailored and they differ among students. Thus, the 𝑥𝑥𝑖𝑖 will 
have to be extended by the item index k, which is tailored for each student based on the item 
selection. To illustrate the purpose of this log-odds scoring, the actual students’ scores for the 
full set of items are shown in Figure 4. 

Students with higher and lower levels of knowledge in medical subjects can be recognized 
by higher and lower log-odds, as the log-odds increases with the percentage of correct items. 
This increase and the ability to show a relative standing in comparison to other students on a 
latent continuum is made possible by the log-odds of the two probabilities. 

Discussion and Conclusion 
This paper has presented item bank construction applying LCA and possible selection and 

scoring algorithms for CAT. An item selection algorithm based on KL information for the 
various class distributions has been discussed and applied to an example data set drawn from 
the Dutch Medical Progress Test.  A log-odds scoring procedure based on estimates of class  
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Figure 4. Log-Odds Scoring for Students in 2015  
Contrasted with Percent of Items Answered Correctly 

 
probabilities for this type of CAT has been introduced for a two-class solution. This framework 
provides the potential to develop CATs using items that do not exactly fit into IRT model 
frameworks. 

The simulation study, in which the KL selection method was compared to random item 
selection, showed that in all test situations the KL method was more likely to classify students 
correctly than the random method. KL selection outperformed random selection for all test 
lengths and for both the two- and three-class solutions. This confirms the earlier study of Cheng 
(2009), in which KL information was successfully used to optimize cognitive diagnosis pro-
cesses. A remarkable finding in the simulations is that the random selection method also cor-
rectly classified high proportions of students.  

The difference between KL and random selection can be seen more clearly in test situations 
with a smaller number of items than in situations with a larger amount of items. A possible 
reason for this increase at a longer test length using random selection is that when more items 
are randomly selected, the probability of selecting an item that contributes well to the classifi-
cation problem also increases. In addition, the number of classes was still low (two- and three-
class solutions) in this application. It is hypothesized that for latent class solutions with a higher 
number of classes, item selection might benefit even more using KL information selection.  
 The option of using LCA and efficient item selection methods for CAT applications has 
been explained in this paper. The outcome of using LCA to deliver CATs will be latent class 
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memberships, either just a class based on modal classification or an actual probability of be-
longing to all of the classes. In practice, latent-class-based CAT outcomes parallel to standard 
CAT measures could be used, which would improve the θ estimates from CAT with a classifi-
cation. In testing situations where it is not necessary to have a continuous score outcome, the 
classification could simply be used. An interesting feature is the possibility of working with 
the probabilities of belonging to a certain class when restrictions have been applied to the LCA. 
For example, these probabilities can be transformed to actual scores and used in practice. 

Further Research 

It would be interesting to study more applications of CATs in practice, applying the ap-
proach described above. There are many other potential ways to apply the methods presented 
in this paper. The methods that have been described are capable of being extended to more 
diverse situations, for example, to developmental psychology.  
 In addition, improvements can be made to these methods. For instance, the decision on 
which restrictions to use for the latent class models can be informed using a pseudo-likelihood 
algorithm to select the optimal class size in LCA. Another very important option for extending 
this research would be to develop scoring methods for a three-class or higher number class 
LCA solution, based on the three different conditional probabilities of belonging to one of the 
classes, given a certain answer pattern. An interesting property of the KL information selection 
algorithm is that KL information is capable of being extended to a PWKL information criterion   
(Cheng, 2009, p. 623). The PWKL incorporates prior knowledge about the class to which a 
student belongs:  
 

( )( ) ( )
,

1

( ) ( ). 
Nc

t t
j i j i c i t c

c

PWKL a D a a aπ
=

=∑  
 
(12) 

 
There are numerous possible applications of PWKL information, as it would then be possible 
to use students’ previous scores as prior information about their previous class membership for 
the next progress test a few months later. Using this information measure in an algorithm in 
future CAPTs would be worth investigating. 
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Supplementary Materials 

An .Rdata data file called “LCAsolutions.Rdata” is available on request from the authors.  
This file contains: 

• An object called “class2LCA”; this is a dataframe with the two-class LCA solution out-
put. 

• An object called “class3LCA”; this is a dataframe with the three-class LCA solution 
output. 
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