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This paper presents the latest developments since the publication of the seminal book by van 
der Linden (2005) on general types of test assembly (TA) problems, major automated test as-
sembly (ATA) methods, and various practical situations in which a TA problem arises. With 
the power of modern combinatorial optimization (CO) methods, multiple practical tasks in 
test development and design that were previously intractable can now be solved. The TA 
problem is, therefore, no longer a central issue for test development but rather a subproblem 
embedded in different practical tasks, where two major approaches are currently exploited: 
mixed-integer programming (MIP) and uniform test assembly (UTA). In the world of ATA, 
the MIP approach is dominant. However, UTA has multiple advantages over MIP. This paper 
concentrates on UTA and enumerates its multiple applications for adaptive testing. 
 
Keywords: automated test assembly, item pool analysis, item pool extension, item pool de-
sign, combinatorial optimization, mixed-integer programming, monte-carlo methods, uniform 
test assembly 
 
Testing organizations periodically produce test forms for assessments in various formats: pa-

per-and-pencil (P&P), computer-based testing (CBT), multistage testing (MST), and computer-
ized adaptive testing (CAT). Each test form includes items selected from an item bank to optimize 
a given objective function and/or to satisfy given test specifications in terms of both statistical and  
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content constraints. Assembling such test forms can be formulated as a combinatorial opti-
mization (CO) problem, referred to here as a test assembly (TA) problem. 

CO is concerned with searching for an element from a finite set (called a feasible set) that 
would optimize (minimize or maximize) a given objective function. Numerous practical 
problems can be formulated as CO problems, where a feasible set is not given explicitly but 
is represented implicitly by a list of inequalities and inclusions. 

Psychometric researchers started to apply CO to TA in the early 1980s. Theunisen (1985) 
reduced a special case of a TA problem to a knapsack problem (Papadimitriou & Steiglitz, 
1982). Van der Linden and Boekkooi-Timminga (1989) formulated a TA problem as a 
maximin problem. Later, Boekkooi-Timminga (1990) extended this approach to the assembly 
of multiple nonoverlapping test forms.1 Soon after, the TA problem attracted many re-
searchers, whose major results are discussed in van der Linden (2005). Currently, the im-
portance of CO in psychometrics is growing due to its recent applications that go beyond TA, 
such as identification of cognitive models (Cen, Koedinger, & Junker, 2006), resource man-
agement (van der Linden & Diao, 2011), optimal learning (van der Linden, 2012), optimal 
linking (van der Linden & Barrett, 2016), and test security (Belov, 2014, 2017), with more 
such applications on the horizon. 

This paper discusses the latest automated test assembly (ATA) developments from a CO 
standpoint, specifically two approaches for ATA: mixed-integer programming (MIP) and 
uniform test assembly (UTA). Although the MIP approach is currently dominant, this paper 
demonstrates that UTA has great potential for ATA applications. In CAT, for example, the 
UTA-based approach by Belov, Armstrong, & Weissman (2008) is more robust to the aber-
rant behavior of examinees (Figure 5 and p. 437) than the MIP-based approach by van der 
Linden & Reese (1998). This result should also extrapolate to robustness against an uncer-
tainty in item parameters. The uncertainty is due to estimation error in item parameters; and it 
exists in P&P, CBT, MST, and CAT, where items are selected from an item bank based on 
item characteristics (e.g., Fisher information) dependent on their modeling parameters. 

Multiple applications of UTA for adaptive testing are demonstrated in this paper. In CAT, 
the UTA approach is applied in the following areas: CAT with content constraints, cognitive 
diagnostic CAT with content constraints, CAT bank assembly, assembly of multiple 
nonverlapping (or partially overlapping) CAT banks, identification of a population distribu-
tion matching a given master bank and CAT specifications, and identification of item proper-
                                                 
1Two tests are called nonoverlapping if they do not have items in common; otherwise, they 
are called overlapping. If the number of items in common (size of the overlap) is less than a 
specified number, these tests are called partially overlapping. 
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ties that would increase the usability of a given master bank for CAT. In MST, the UTA ap-
proach is applied in assembly of an MST form; assembly of multiple nonoverlapping (or par-
tially overlapping) MST forms, identification of item properties that would increase the 
number of nonoverlapping (or partially overlapping) MST forms available from a given bank, 
and estimating IRT targets for MST. 

Throughout this paper, the following notation is used: 
• Lowercase letters , , ,...a b c  denote scalars; 
• Bold lowercase letters , , ,...a b c  denote vectors; 
• Capital letters , , ,...A B C  denote sets. The number of elements in a set S is denoted 

by S ; ∅denotes an empty set; and 
• Bold capital letters , , ,...A B C  denote functions. 

General Types of Test Assembly Problems 
Van der Linden (2005) described specific types of TA problems for different types of as-

sessments (i.e., P&P, CBT, MST, CAT) in his seminal textbook Linear Models for Optimal 
Test Design. Real instances of TA problems have been studied by Ariel, Veldkamp, and 
Breithaupt (2006); Armstrong, Belov, and Weissman (2005); Belov and Armstrong (2005); 
Belov and Armstrong (2008); Belov et al. (2008); Breithaupt, Ariel, and Veldkamp (2005); De 
Jong, Steenkamp, and Veldkamp (2009); Veldkamp (2002); and Veldkamp and van der Linden 
(2002). 

Test Assembly as a Problem of Combinatorial Optimization 

Generally, a TA problem can be formulated as the following CO problem: 

           
maximize  ( )
subject to ∈ X

F x
x

         (1) 

1 2( , ,..., )= T
nx x xx is a binary decision vector defining a test, such that if 1=ix , then item

i  is included in the test; otherwise (i.e., 0=ix ), item i  is not included in the test. 
n  is the number of items in the item bank. 
Set X contains all binary vectors, each defining a feasible test. Therefore, this set is called 

a feasible set. In practice, a feasible set is not given explicitly but is represented im-
plicitly by a list of inequalities and inclusions constraining the decision vector.  This 
list is constructed directly from test specifications. For example, the following repre-
sents a feasible set with all tests containing 5 to 10 items: 
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where the constraint {0,1}ix ∈ is included in any CO problem (i.e., each feasible solu-
tion 1 2( , ,..., )T

nx x x=x has to be a binary vector). 
( )F x is an objective function (possibly a vector function; for a multiobjective TA prob-

lem, see Veldkamp, 1999). For example, in CAT, the following linear objective 
maximizes the Fisher information of a test at a current ability estimate θ̂ : 

          
1

ˆmaximize ( )θ
=
∑

n

i i
i

xI ,         (2) 

   where ˆ( )θiI  is the Fisher information of item i at ability level θ̂  (Lord, 1980). 

Test Assembly as a Problem of Constraint Satisfaction 

A TA problem can also be formulated as the following constraint satisfaction problem: 

            .X∈x            (3) 

Many practical tasks can be reduced to the analysis of the feasible set .X  For example, in 
P&P and CBT modes, each item can be administered only once. Therefore, it is crucial for 
item bank maintenance to have an estimate of the maximum number of nonoverlapping tests 
available from an item bank, given the test specifications. An approximate solution can be 
found by sampling from the feasible set and then solving the maximum set packing problem 
(given a collection of subsets, find a maximum subcollection with mutually disjoint subsets). 
For the sampling, the problem in Expression 3 (hereinafter referred to as Problem 3) can be 
solved multiple times such that each vector from X has an equal probability of being a solu-
tion.  

In other words, every test from the feasible set X has 1/ X  probability of being assem-
bled. This process is called uniform test assembly (UTA). Additional details on UTA and its 
applications are presented later in this paper. 

Often a good lower bound for the objective function is known or can be easily computed 
(Belov & Armstrong, 2009). Subsequently, Problem 1 can be approximated by Problem 3. 
For example, the following represents a feasible set with all possible tests containing 5 to 10 
items and having Fisher information at ability estimate θ̂  above the lower bound 3: 
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Interestingly, Problem 3 can be approximated by Problem 1 as well: 

          1
maximize  

subject to ,

α
=

∈

∑
n

i i
i

x

Xx
          (5) 

where 1 2, ,...,α α αn are independent and uniformly distributed on [0, 1). Vector 

1 2( , ,..., )α α α= T
nα  is resampled each time before Problem 5 is solved, thus allowing the as-

sembly of different tests.  
Intuitively, it would be expected that because vector α  is uniformly distributed, the re-

sultant sample of assembled tests should be uniform. However, Belov (2008) proved that, in 
general, a sequence of optimal solutions to Problem 5 does not provide a uniform sample 
from the feasible set. Only if a feasible set contained pairwise nonoverlapping tests (which 
hardly ever happens in practice) would a sequence of optimal solutions to Problem 5 provide 
a uniform sample. In general, therefore, UTA cannot be formulated as Problem 5. The ques-
tion as to whether UTA can be achieved via a sequence of optimal solutions to a certain in-
stance of Problem 1 is still open (Belov, 2008). 

Test Assembly Problem Under Uncertainty 

Usually, inequalities defining the feasible set X can be grouped into content constraints, 
(i.e., the first inequality in Problem 4) and statistical constraints (i.e., the second inequality in 
Problem 4). Content constraints are known precisely. Statistical constraints usually include 
the parameters of item response theory (IRT) models (Lord, 1980), which are calibrated from 
the response data and therefore subject to error. Thus, the assembled test might not actually 
satisfy the statistical constraints, and/or the objective function can be overestimated or un-
derestimated. All real-life instances of TA problems are under uncertainty due to estimation 
errors in the statistical parameters of items. 

Optimization under uncertainty is a well-studied field. There are two major approaches: 
stochastic optimization (Birge & Louveaux, 1997) and robust optimization (Bertsimas, 
Brown, & Caramanis, 2011).  

Consider a common TA problem in CAT: 



Journal of Computerized Adaptive Testing 
Dmitry Belov − Uniform Test Assembly and Adaptive Testing 

 

 

6 | JCAT Vol. 5 No. 1                                             February 2017 
 

          1

ˆmaximize ( )

subject to 

n

i i
i

x

X

θ
=

∈

∑ I

x
,         (6) 

where feasible set X is defined by content constraints (known precisely), but each coeffi-
cient ˆ( )θiI has an error associated with it as a result of item parameter estimation using a 
given procedure such as expectation maximization (EM) or Markov chain monte-carlo 
(MCMC).  

Assume that distributions of each parameter estimated under an IRT model are known, 
where these distributions are outcomes of a specific MCMC procedure that was used to esti-
mate the item parameters. Then, a stochastic counterpart of Problem 6 is formulated as fol-
lows: 

         1 2
1

ˆmaximize Ε[ ( , , ,...)]

subject to 

n

i i i i
i

h h x

X

θ
=

∈

∑ I

x
,      (7) 

where the expectation is taken over parameters 1 2, ,...i ih h  of item .i  In this case, Problem 7 
can be solved directly. 

Assume that ˆ( )θiI  has an error such that [ ]ˆ( ) ,  θ ∈ −i i i iu d uI  with high probability, 
where iu  and id are estimated by EM or MCMC procedures. From Bertsimas and 
Sim (2003), it follows that a robust counterpart of Problem 6 can be formulated: 

        { | , }1
maximize max

subject to 

n

i i j jS S N S gi j S
u x d x

X

⊆ ≤
= ∈

 
− 

 
∈

∑ ∑
x

,      (8) 

where { }1,2,...,N n= and g is a parameter chosen beforehand. An optimal solution to Prob-
lem 8 defines a test with Fisher information at ability level θ̂  above a certain threshold. This 
inequality holds under uncertainty in at most g items. Clearly, Problem 8 cannot be solved 
directly. However, Bertsimas and Sim (2003) developed a method to solve Problem 8 by di-
rectly solving 1+n  problems: 

       
1

1 1 1
max max ( )

subject to 

n ln

l i i j l jl i j
gd u x d d x

X

+

=
= =

  
− + − −  
   

∈

∑ ∑
x

,      (9) 



Journal of Computerized Adaptive Testing 
Dmitry Belov − Uniform Test Assembly and Adaptive Testing 

 

 

7 | JCAT Vol. 5 No. 1                                             February 2017 
 

where, without loss of generality, 1 2 1... 0+≥ ≥ ≥ ≥ =n nd d d d  is assumed. Additional details 
on the application of robust optimization for ATA can be found in Veldkamp (2012a). 

An alternative approach to accommodate the uncertainty in item parameters is to state the 
TA problem as Problem 3 but use narrower bounds for statistical constraints. New bounds 
should be computed (e.g., by a monte-carlo method) such that the probability of a feasible 
test violating the original bounds is below a given significance level. This approach can be 
implemented within existing ATA methods. 

Automated Test Assembly Methods 

From a geometrical standpoint, the TA problem is solved by searching through the verti-
ces of the hypercube 1 2{ ( , ,..., ) | 0 1,  1, 2,..., }T

n ix x x x i n= ≤ ≤ =x  until a vertex 0 ∈ Xx that 
optimizes the objective function ( )F x is found (see Problem 1) or until a vertex 0 ∈ Xx is 
found (see Problem 3). The number of vertices of the hypercube is 2n , where n is the num-
ber of items in the item bank. Therefore, the search can run for some time, exponentially de-
pendent on the number of items in the bank. In practice, this problem is often solvable by 
modern ATA methods in a reasonable amount of time on a personal computer.  

Branch-and-Bound 

The branch-and-bound (B&B) method solves Problem 1 by performing an intelligent 
search through vertices of the hypercube. It starts by finding an optimal solution to the relax-
ation of Problem 1 without the key constraint {0,1}∈ix , 1, 2,...,=i n . The relaxation can 
often be solved in polytime, which means that the running time of the solver is bounded by a 
polynomial in size of the problem (see Garey & Johnson, 1979), resulting in a fast conver-
gence. An optimal solution to the relaxation provides a choice of branching decisions and an 
upper bound for Problem 1. More precisely, a coordinate, 1 ,j n≤ ≤  is selected, where an 
optimal solution to the relaxation has a fractional value. Then two new subproblems are add-
ed to a list of subproblems, which is initially empty: (1) relaxation with additional constraint 

0=jx  and (2) relaxation with additional constraint 1=jx .  
Each subproblem on the list is solved, where one of the following cases is possible:  
1. The subproblem is infeasible; that is, the corresponding feasible set =∅X . 
2. An optimal solution to the subproblem is binary, which provides a feasible solution to 

Problem 1; this solution is used to update the global solution. 
3. An optimal solution to the subproblem is not binary, and its objective function is less 

than or equal to the global objective found so far. 
4. An optimal solution to the subproblem is not binary, and its objective function is 

greater than the global objective found so far. 
In Cases 1–3, the subproblem is removed from the list and the next subproblem on the list 
will be analyzed. In Case 4, branching of the subproblem is applied (see above) and then the 
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subproblem is removed from the list. When the list is empty, it can be claimed that an optimal 
solution to Problem 1 has been found. For more details, see Papadimitriou and Steiglitz 
(1982) and Nemhauser and Wolsey (1988). 

With the B&B method, optimality of a feasible solution to Problem 1 can be proved. The 
success of applying B&B depends on how well a solver adapts to each instance of Problem 1 
or, more precisely, how well the structure of an instance is taken into account to organize ef-
fective branching and bounding. 

When Problem 1 is linear and its matrix of the system of inequalities is totally unimodular 
(Nemhauser & Wolsey, 1988), the relaxation of Problem 1 has a binary optimal solution. In 
addition, several fast polytime algorithms are available to solve the relaxation (Ahuja, 
Magnanti, & Orlin, 1993). If a large submatrix of the matrix of the system of inequalities is 
totally unimodular, then the assembly of linear tests can be performed efficiently (Armstrong, 
Jones, & Kunce, 1998; Armstrong, Jones, & Wu, 1992) by a combination of network flow 
programming, Lagrangian relaxation, and B&B. 

The B&B method is a core of the MIP approach to large practical problems of item bank 
analysis and design. Typically, a real-life problem is formulated as an instance of Problem 1 
and then solved directly with the B&B method.  

Heuristics 

Heuristic methods (heuristics) provide a relatively fast search through vertices of the hy-
percube that are likely to discover a near solution. In the case of Problem 1, it is a suboptimal 
solution; in the case of Problem 3, it is a subfeasible solution. A comprehensive review of 
ATA heuristics is given by van der Linden (2005). 

Some heuristics (Swanson & Stocking, 1993) move the constraints to the objective func-
tion, which essentially is a Lagrangian relaxation (Nemhauser & Wolsey, 1988). Then set X  
is no longer a feasible set because some vectors from X may violate constraints that were 
incorporated into the objective function ( )F x .  

For example, consider the following TA problem: 

         

1

1

ˆmaximize ( )

subject to 5 10

{0,1}

θ
=

=

≤ ≤

∈

∑

∑

n

i i
i

n

i
i

i

x

x

x

I

,         (10) 
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where the feasible set only contains vertices of the hypercube with 5 to 10 positive coordi-
nates (corresponding to tests with 5 to 10 items). By applying Lagrangian relaxation, the TA 
Problem 10 is transformed into the following: 

     

1 2
1 1 1

1

2

ˆmaximize ( ) 5 10

subject to {0,1}
0
0

θ λ λ

λ
λ

= = =

   + − + −   
   

∈
≤
≥

∑ ∑ ∑
n n n

i i i i
i i i

i

x x x

x

I

,      (11) 

where the feasible set contains all vertices of the hypercube. 
Most heuristics in the ATA literature are based on sequential item selection: One item is 

selected at a time until the required number of items is reached, where each selection mini-
mizes the current value of a residual. There are numerous types of residuals (Ackerman, 
1989; Leucht, 1998; Swanson & Stocking, 1993) driven by various TA constraints and/or TA 
objectives. These heuristics minimize the current value of the residual, expecting that when 
the required number of items are selected, these items should satisfy the constraints and/or 
optimize the objective. Such heuristics belong to a class known in CO literature as greedy 
heuristics (Papadimitriou & Steiglitz, 1982). For example, consider the following TA prob-
lem: 

           

1

1

ˆ( )

10

{0,1}

θ
=

=

=

=

∈

∑

∑

n

i i
i
n

i
i

i

x t

x

x

I

,           (12) 

where t is a target value of the Fisher information at the current θ  estimate. Assume that 
three items { }1 2 3, ,S i i i= were already selected. Then, according to Leucht (1998), the fourth 
item, i4 should minimize the following residual: 

         
4

ˆ ˆ( ) ( ) 7 .i i i
i S

t xθ θ
∈

 − − 
 

∑I I          (13) 

While greedy heuristics are fast, their solutions are only locally optimal and therefore 
might violate some of the constraints (e.g., see TA Problem 11). At the same time, in 
high-stakes testing, violation of certain or all constraints is not acceptable (Ariel et al., 2006; 
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Armstrong et al., 2005; Breithaupt et al., 2005; De Jong et al., 2009; Veldkamp, 2002; 
Veldkamp & van der Linden, 2002). Several CO approaches have been applied to avoid get-
ting stuck in a local optimum while solving a TA problem, such as simulated annealing (van 
der Linden, Veldkamp, & Carlson, 2004) and genetic algorithms (Verschoor, 2004). 

Monte-Carlo Test Assembler 

The monte-carlo test assembler (MCTA) was introduced by Belov and Armstrong (2004, 
2005) to solve TA Problem 3. It is straightforward in concept and consists of two steps: 

Step 1: Generate a random vector of items. 
Step 2: If this vector satisfies test specifications, save it as a new test and stop; otherwise, 

return to Step 1. 
The biggest challenge with the monte-carlo technique is avoiding generating many “use-

less” vectors at Step 1. Belov and Armstrong (2004, 2005) have developed several strategies to 
reduce the search space such that it still has a nonempty intersection with the feasible set. They 
exploited properties of the constraints, using a divide-and-conquer principle and tabu search, 
and prioritized constraint checking based on their computational complexity. MCTA has been 
applied for P&P (Belov & Armstrong, 2004, 2005), MST (Belov & Armstrong, 2008), and 
constrained CAT (Belov et al., 2008). The performance of MCTA is surprisingly fast. For 
example, Belov et al. (2008) reported that the monte-carlo CAT performed 20 times faster than 
the shadow CAT (van der Linden & Reese, 1998). 

The major advantage of MCTA is its ability to perform uniform sampling from the fea-
sible set .X  This advantage is useful in practice. For example, due to its random nature, the 
convergence rate of MCTA determines how large the feasible set is: The higher the rate, the 
larger the feasible set. The size of the feasible set directly indicates how given test specifica-
tions match a given item bank. Other potential approaches to produce a uniform sampling 
from the feasible set are analyzed by Belov (2008). MCTA is a core of the UTA approach to 
large practical tasks in item bank analysis and design, where properties of a feasible set of a 
given instance of Problem 3 are explored and exploited via uniform sampling from the feasi-
ble set.  

Applications of UTA for Adaptive Testing 
The major purpose of ATA is to assemble one test at a time. The specifics of a particular 

assessment, however, might influence the methods described in the previous section. In CAT, 
the shadow CAT method (see the MIP approach by van der Linden & Reese, 1998) selects 
the next item maximizing Fisher information at the currentθ estimate, such that the adminis-
tered sequence of items satisfies content constraints. Monte-carlo CAT (Belov et al., 2008) 
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allows a balance between the maximization of Fisher information and the robustness of the 
θ  estimate to possible mistakes made by the examinee during a test or to an uncertainty in 
item parameters. In MST, each path in an MST form must be assembled, taking into account 
common testlets between paths (for more details, see Belov & Armstrong, 2008). 

In each assessment, there are multiple tasks in which ATA is a crucial subproblem (van 
der Linden, 2005). Belov (2008) demonstrated that, from a mathematical standpoint, many of 
these tasks can be reduced to the analysis of properties of the feasible set X . 

Analyzing Properties of the Feasible Set 

For real-life item bank and test specifications (e.g., in P&P, CBT, MST, or CAT), compu-
ting the whole feasible set is intractable. The analysis of the matrix of the system of inequali-
ties is very limited and possible only for linear systems. In general, the only way to study the 
properties of a feasible set is therefore to construct and analyze a uniform sample from the 
feasible set. 

Assume that there is a way to assemble tests such that each element of the feasible set has 
an equal probability of being selected (as in UTA) and multiple tests can be assembled without 
withdrawing their items from the bank. Since the resulting sample of tests is drawn uniformly, 
it can be considered representative of the feasible set. The statistical inference about properties 
of the feasible set thus can be acquired from this sample. For example, an item usage frequency 
can be calculated (its applications are demonstrated below). Given a set of tests, the usage 
frequency of an item is the number of tests that include this item, where an item with the 
highest usage frequency is called the most usable item and an item with the lowest usage fre-
quency is called the least usable item. The computation of item usage frequency is straight-
forward: 

Step 1: Assemble multiple tests uniformly without withdrawing their items from the bank. 
Step 2: For each item in the bank, count how many assembled tests include the item. 

Analyzing Feasibility of a Test Assembly Problem 

This is a crucial task for any testing program, including P&P, CBT, MST, and CAT. It 
should answer the following questions: Is the feasible set empty? If yes, which constraints 
make it empty? If no, how large is the feasible set? 

Belov and Armstrong (2005) used uniform sampling from embedded feasible sets (where 
each embedding corresponds to an additional subset of constraints) to identify the most diffi-
cult constraints. Difficult constraints dramatically reduce the size of the feasible set and might 
even cause the feasible set X to be empty, which makes the corresponding TA problem infea-
sible. Therefore, a larger drop in performance of MCTA, after another subset of constraints is 
added to the TA problem, indicates a more difficult subset of constraints (for more details, see 
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Belov & Armstrong, 2005). An alternative approach based on MIP is presented by Huitzing, 
Veldkamp, and Verschoor (2005). 

Due to the nature of MCTA, its rate of convergence characterizes the strengths and 
weaknesses of a given bank in relation to the test specifications. The larger the number of 
potential tests (meaning the larger the feasible set), the faster the MCTA finds tests. Thus, the 
performance time of MCTA can be used to compare and evaluate different item banks and/or 
test specifications. 

Constrained CAT Based on UTA 

Test assembly in the context of CAT frequently shares with its P&P counterparts the need 
to select items satisfying content constraints. Added to this problem, however, are the fol-
lowing requirements: (1) to assemble tests adapted to examineeθ , (2) to assemble these tests 
while administering them, (3) to monitor and control the exposure of items in the bank, (4) to 
provide estimates of θ  robust to uncertainty both in item parameters (see above) and in ex-
aminee behavior [e.g., when a high (or low) ability examinee performs poorly (or well) at the 
beginning of the test]. 

The shadow CAT by van der Linden & Reese (1998) automatically meets requirements (1) 
and (2). However, to meet requirement (3), it needs an additional mechanism for item expo-
sure; for example, van der Linden & Veldkamp (2004) added exposure control through item 
ineligibility constraints. Requirement (4) calls for an additional mechanism provided by 
methods of robust optimization (Veldkamp, 2012b) or stochastic programming. 

Monte-carlo CAT (MCCAT) was developed by Belov et al. (2008) to meet all of the above 
requirements. As with multiple other applications of UTA, the concept of MCCAT is simple. 
Given the current estimate of θ and l already administered items, perform the following: 

Step 1: Uniformly assemble multiple test forms satisfying all content constraints, where 
each form has l already administered items. 

Step 2: Select an item most informative at the current θ  estimate from the sample of 
not-yet-administered items randomly drawn from the test forms assembled at Step 
1, where the size of the sample gradually increases with each administered item. 
This gradual increase helps to find more informative items closer to the end of the 
test, when the current θ  estimate is near the true θ  and to avoid administering 
highly informative items at the beginning of the test, when the current θ  estimate 
might be far from the true θ . 

Belov et al. (2008) demonstrated that MCCAT, which has a slightly larger estimation error, 
provided much better item exposure and robustness in comparison to shadow CAT. This was 
due to UTA and the gradual increase of the sample of items. The authors did not evaluate how 
the uncertainty in item parameters might affect shadow CAT and MCCAT. A positive corre-
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lation between an item discrimination parameter and its estimation error was examined by 
Veldkamp (see Veldkamp, 2012a, Figure 2, p. 599). More informative items thus should have 
larger uncertainty in their parameters. Therefore, the shadow CAT should be more affected by 
this uncertainty because, in contrast to MCCAT, it always selects an item most informative at 
the currentθ estimate. 

MCCAT is governed by just one parameter (the size of the sample) to balance between the 
precision and the robustness of the θ  estimate. Belov et al. (2008) demonstrated how different 
changing rules for this parameter can influence the outcome of the MCCAT. For example, a 
rule described in Proposition 2 (pp. 434-435) will cause the MCCAT to be equivalent to the 
shadow CAT. 

Recently, MCCAT was applied by Mao & Xin (2013) for cognitive diagnostic CAT with 
content constraints. They demonstrated via computer simulations that (1) MCCAT satisfied 
test specifications and produced satisfactory measurement precision and item exposure rates 
and (2) MCCAT outperformed the modified maximum global discrimination index method 
when MCCAT utilized item selection methods based on Kullback–Leibler divergence. Over-
all, the recovery rate of the knowledge states, the distribution of item exposure, and the utili-
zation rate of the item bank were improved when MCCAT was used  

Assembly of a CAT Bank 

Usually, in CAT there is a large master bank from which a smaller CAT bank is assembled 
for the next administration. Any realistic method of CAT bank assembly should guarantee the 
following two objectives of CAT bank design: (1) the existence of at least one feasible test 
form (i.e., a sequence of items satisfying all content constraints) and (2) bounded values of 
mean squared error and bias for the estimated θ . Exploiting the MIP approach, a CAT bank 
was assembled by van der Linden, Ariel, and Veldkamp (2006) as a set of nonoverlapping 
feasible forms, where each form maximized information at a certain point, and points were 
distributed according to the expected population. Van der Linden et al. (2006) demonstrated a 
satisfaction of the two CAT design objectives via computer simulations. However, their heu-
ristic is information greedy, causing each subsequent CAT bank assembled from the master 
bank to be less and less informative. A modification of this method (based on the UTA ap-
proach) by Belov and Armstrong (2009) enables the assembly of multiple (infor-
mation-parallel) CAT banks that guarantee the two CAT design objectives. 

CAT Bank Analysis 

Exploiting the UTA approach, Belov and Armstrong (2009) computed a distribution of 
examinees most suitable for a given item bank and test specifications in two stages: 

Stage 1: Sample from the feasible set. 
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Stage 2: Compute the distribution based on test information functions from tests assembled 
in the previous stage (see Belov & Armstrong, 2009, Algorithm 4, p.541). 

Extracting Multiple Nonoverlapping (or Partially  
Overlapping) Tests and CAT Banks 

Given test specifications and an item bank, the number of available nonoverlapping tests is 
a critical indicator of bank usability for testing organizations producing P&P, CBT, and MST  
because each corresponding test form can be administered only once. In the case of CAT, this 
is equivalent to the number of available nonoverlapping CAT banks assembled from a large 
master bank. All methods described below are immediately applicable for extracting multiple 
nonoverlapping (or partially overlapping) CAT banks. 

The simultaneous assembly of multiple nonoverlapping tests suggested by 
Boekkooi-Timminga (1990) is often intractable, given real test specifications and an item 
bank. A simple heuristic (Boekkooi-Timminga, 1990) is to assemble a test, withdraw its items 
from the bank, then assemble another test, and so on, until the TA problem becomes infeasible 
(or until a TA solver cannot assemble a test within given period of time). Such an approach is 
known as sequential assembly. However, it is easy to demonstrate (Belov, 2008) that this ap-
proach might often assemble only a few nonoverlapping tests. Subsequently, alternative 
methods have been developed that greatly outperform sequential assembly by utilizing prop-
erties of the feasible set. 

Belov and Armstrong (2006) suggested a set packing approach. They assembled multiple 
nonoverlapping tests in two stages: 

Stage 1: Sample from the feasible set. 
Stage 2: Solve the maximum set packing (or, equivalently, the maximum clique) problem 

(Garey & Johnson, 1979) for the resulting sample. 
They applied this approach for P&P, in particular for the LSAT (Belov & Armstrong, 2005) 
and for MST (Belov & Armstrong, 2008). 

Belov (2008) developed a modified sequential assembly (MSA) approach by exploiting 
item usage frequency in order to keep more usable items for later assemblies. The set packing 
approach and the MSA both demonstrated twice the speed and resulted in the same number of 
nonoverlapping tests when the least usable items were withdrawn from the bank before im-
plementing the two approaches (Belov, Williams, & Kary, 2015). In addition, Belov et al. 
(2015) studied a mixed method where the utilization of item usage frequency is combined with 
the set packing approach: 

Step 1: Remove the most usable items from the bank. 
Step 2: Apply the set packing approach. 
Step 3: Withdraw items of the assembled tests from the bank. 
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Step 4: Add the most usable items to the bank. 
Step 5: Apply the set packing approach. 
An alternative approach based on MIP modeling to improve the sequential assembly, called 

shadow test assembly, was developed by van der Linden and Adema (1998). More specifically, 
to assemble m nonoverlaping tests, at each iteration ,  1, 2,...i i m= , the following two steps are 
performed: 

Stage 1: Assemble test .i  
Stage 2: Assemble a shadow test that satisfies relaxed inequalities with original bounds   

multiplied by m i− . A major issue with this approach, however, is that some 
constraints cannot be relaxed this way. 

The above methods can be used for assembling nonoverlapping testlets for MST. A special 
MIP model was developed by Ariel et al. (2006) for assembling multiple nonoverlapping 
testlets. Their approach assembles a given number of nonoverlapping testlets simultaneously 
while maximizing a lower bound for testlet information functions. This simultaneous assembly 
was tractable because the corresponding MIP model induced the matrix of the corresponding 
linear system of inequalities with a special structure (e.g., totally unimodular). 

Obviously, all of the above methods are also applicable when a partial overlap between 
tests is allowed. For example, in the set packing approach, a graph can be built (where each 
vertex corresponds to a test from the uniform sample) based on the size of the overlap between 
tests. Precisely, given two different tests, if the size of their overlap is less than a given 
threshold (Threshold 1 means no overlap), then the edge is created between corresponding 
vertices of the graph; and the maximum clique (Garey & Johnson, 1979) in the graph is the 
solution of the problem. 

Efficient Item Bank Maintenance 

In all assessments, test developers need to identify the properties of future items that would 
help maintain their item bank efficiently. In particular, in P&P, CBT, MST, and CAT bank 
assembly, test developers need to minimize the number of new items required in order to 
maximize the number of nonoverlapping test forms (or CAT banks) available from an existing 
bank. This minimax problem can be solved by exploiting item usage frequency (Belov & 
Armstrong, 2005, 2008), which is computed from a uniform sample of tests. In computer ex-
periments with an LSAT item bank and constraints, Belov and Armstrong (2005) demonstrated 
that adding just a few new items that have properties similar to those of the most usable items 
dramatically increases the number of nonoverlapping tests that can be assembled. Alternative 
approaches for designing and maintaining item banks are based on MIP modeling (Ariel, van 
der Linden, & Veldkamp, 2006; Ariel, Veldkamp, & Breithaupt, 2006; Ariel, Veldkamp, & 
van der Linden, 2004). 
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Estimating IRT Targets for MST 

When a testing organization migrates from P&P to an adaptive format such as MST, con-
tent constraints for each path in an MST form are the same as in a P&P form. However, IRT 
targets for each path (i.e., targets for the test response function and the test information function 
of each path in an MST form) should differ in order for the assembled MST form to adapt to 
examinee θ . Belov and Armstrong (2008) address this issue as follows: 

Step 1: Build a uniform sample from the feasible set of linear forms, where each form is a 
vector of items satisfying the content constraints of the MST path. 

Step 2: Administer the resultant sample to simulated examinees drawn from a given dis-
tribution. 

Step 3: Use the resultant scores to partition the sample such that the target for each MST 
path is constructed from items most informative at the corresponding θ  range. 

This UTA-based method allows balancing between the measurement precision of assembled 
MST forms and the utilization of an item bank. 

Summary 
This paper has presented recent developments in general types of TA problems, major 

ATA methods, and various practical situations where a TA problem arises, with an emphasis 
on adaptive testing. Due to the latest achievements in CO theory and methods, multiple prac-
tical tasks in test development and design that were once intractable can now be solved. 
Therefore, it can be concluded that the TA problem is no longer a central issue for test de-
velopment but is rather a subproblem embedded in larger practical tasks. This paper distin-
guished two major approaches to these larger tasks: 

MIP: Treating a TA problem as Problem 1 and solving it with the B&B method. 
UTA: Treating a TA problem as Problem 3 and solving it with a monte-carlo method, re-

sulting in a uniform sampling from the feasible set. 
Both approaches have been applied in practice. The MIP approach is a natural choice for 

testing programs in which the test is defined by constraints and an objective function to be 
optimized; see Ariel et al. (2006); Armstrong et al. (2005); Breithaupt et al. (2005); De Jong 
et al. (2009); Veldkamp (2002); and Veldkamp and van der Linden (2002). On the other 
hand, the UTA approach is appropriate for testing programs in which the test is defined by 
constraints only; see Armstrong et al. (2005); Belov and Armstrong (2005); and Belov and 
Armstrong (2008). 

UTA is often undervalued in the world of ATA, where the MIP approach is dominant. 
However, UTA has a great potential for the ATA under uncertainty, which is always the case 
in P&P, CBT, MST, and CAT, where items are selected from an item bank based on item 
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parameters estimated with error. For example, in CAT, the UTA approach by Belov et al. 
(2008) is more robust to aberrant behavior of examinees than the shadow CAT by van der 
Linden & Reese (1998), which should also extrapolate to robustness against the uncertainty 
in item parameters. 

A major advantage of UTA is its conceptual simplicity and scalability. Once a UTA solv-
er that assembles just one test form at a time is developed, UTA can be applied to multiple 
applications with ease. Most applications involve just two major steps: (1) building a uniform 
sample from the feasible set and (2) computing an estimate of interest from the resultant 
sample (e.g., item usage frequency, number of nonoverlapping tests, and sample of items to 
select the next item administered in CAT). This makes it easy for practitioners to interpret 
results. In contrast, the MIP approach often results in a complicated mathematical model and 
a special heuristic, both of which need to be explained to practitioners. 

In CAT, the UTA approach was applied in the following areas: CAT with content con-
straints, cognitive diagnostic CAT with content constraints, CAT bank assembly, assembly of 
multiple nonoverlapping (or partially overlapping) CAT banks, identification of population 
distribution matching a given master bank and CAT specifications, and identification of item 
properties that would increase the usability of a given master bank for CAT. 

In MST, the UTA approach was applied in the following areas: assembly of an MST 
form, assembly of multiple nonoverlapping (or partially overlapping) MST forms, identifica-
tion of item properties that would increase the number of nonoverlapping (or partially over-
lapping) MST forms available from a given item bank, and estimating IRT targets for MST. 

A major practical disadvantage of UTA is that for each particular testing program the 
UTA solver has to be developed first. This may involve substantial efforts from software de-
velopers, whereas multiple commercial and free MIP solvers are readily available. 
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