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The aim of cognitive diagnosis models (CDMs) is to provide students and educators with 

individually tailored diagnostic results for students’ mastery levels of a group of fine-

grained skills, or attributes. The field of variable-length cognitive diagnostic computerized 

adaptive testing (CD-CAT) aims to deliver diagnostic assessments that accurately classify 

students using the fewest number of items possible. A crucial element of a CD-CAT is the 

𝑄-matrix, a 1-0 matrix mapping the skills required by each item. This paper describes a 

simulation study that systematically explored factors affecting the accuracy and average 

length of a variable-length CD-CAT, including composition of the 𝑄-matrix, correlation 

among skills, item selection rule, and CDM. It was found that higher density 𝑄-matrices 

(i.e., 𝑄-matrices in which individual items tap many skills) yield longer and less accurate 

tests than lower density 𝑄-matrices (i.e., 𝑄-matrices in which individual items tap fewer 

skills). The two item selection rules examined—mutual information and modified posterior 

Kullback-Leibler information—performed very similarly. Higher correlation among skills 

tended to increase average test lengths and decrease accuracy noticeably when the 𝑄-

matrices were high density. 
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Cognitive diagnostic models (CDMs) are discrete multivariate latent trait models that 

classify examinees according to whether they have mastered a set of 𝐾 skills, or attributes. 

Some authors have suggested that “attributes” is a more general term than “skills.” In partic-

ular, de la Torre (2009) stated that the term “attributes” subsumes skills and cognitive 

processes; he used  “skills” and “attributes” synonymously in the context of assessing fraction 

subtraction. Similarly, this paper uses the two terms interchangeably. Specifically, each indivi-

dual skill is regarded as a binary latent variable, with the two levels being “mastery” and “non-

mastery.” Thus, for an assessment diagnosing 𝐾 skills, examinees are classified into one of 2𝐾 

possible skill mastery patterns. 

CDMs are intended to provide timely and detailed diagnostic information to students, 

teachers, parents, and school administrators. It has been suggested that CDMs will be most 

effective in reaching these goals if the diagnostic assessments can be administered quickly and 

efficiently on a computer. For example, Jang (2008) elaborated upon the benefits of compu-

terized diagnostic testing by describing a hypothetical scenario in which a language teacher 

completes a unit and creates a computerized diagnostic assessment to yield information about 

students’ mastery on a set of fine-grained skills. Researchers are currently making progress to 

turn this hypothetical situation into reality.  

The field of cognitive diagnostic computerized adaptive testing (CD-CAT) has seen 

methods proposed for selecting optimal items in diagnostic tests (Cheng, 2009, 2010; Kaplan, 

de la Torre, & Barrada, 2015; Wang, 2013; Xu, Chang, & Douglas, 2003) and for stopping a 

variable-length CD-CAT when a reliable classification can be made (Hsu, Wang, & Chen, 

2013). Similar to item response theory (IRT)-based CAT, a CD-CAT is thus expected to be 

more efficient than a pencil-and-paper diagnostic test: At a given stage of the test, the next 

item is administered based upon the examinee’s performance up to that point. 

Previous simulation studies have focused attention on factors such as item quality and 

structure of the 𝑄-matrix, a key element of CDM methodology that is described in more detail 

below. Briefly, a 𝑄-matrix is a 1-0 mapping of the skills required by each test item and is said 

to be of higher or lower density depending on whether the individual items comprising it tend 

to require many or few skills, respectively. The aim of this study was to investigate the ability 

of a variable-length CD-CAT to accurately classify examinees using a minimal number of 

items under various testing conditions in which several factors were systematically examined, 

specifically, 𝑄-matrix density, generating CDM, correlation among skills, and item selection 

method.  

To the authors’ knowledge, this is the first study to manipulate these factors simultaneously 

in the context of variable-length CD-CAT. Wang (2013) varied item quality and 𝑄-matrix 

structure but in the context of fixed-length CD-CAT. Cheng (2010) focused on item selection 

for fixed-length tests but did not manipulate item quality or 𝑄-matrix structure.  Kaplan et al. 

(2015) conducted a simulation study that examined both fixed- and variable-length CD-CAT, 

but the 𝑄-matrix was fixed and correlation among skills was not considered. It is hoped that 

the findings in this paper will spur discussion and the further development of these models for 

use in practical operational settings.  
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Method 

Cognitive Diagnostic Models 

There are currently many types of models and approaches in the psychometrics literature 

designed to provide fine-grained diagnostic score reports. For taxonomies, lists, and descriptions 

of methods, see DiBello, Roussos, and Stout (2007); Rupp and Templin (2008); or Rupp, Templin, 

and Henson (2010). Although the details differ from one approach to another, one commonality 

among many of the models is the positing of a vector of latent attributes representing skill 

masteries, 𝜶𝒊 = (𝛼𝑖1, 𝛼𝑖2, … , 𝛼𝑖𝐾)′, where for 𝑘 = 1, … , 𝐾, 

 

𝛼𝑖𝑘 = {
1          𝑖𝑓 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑒 𝑖 ℎ𝑎𝑠 𝑚𝑎𝑠𝑡𝑒𝑟𝑒𝑑 𝑠𝑘𝑖𝑙𝑙 𝑘
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

      
      (1) 

Many CDMs are special cases of restricted latent class models that use an item response 

function (IRF) to assign probabilities of a correct response conditionally upon the item parameters 

and 𝜶𝒊. The IRF takes the general form 𝑃(𝑋𝑖𝑗 = 1|𝜶𝒊), where 𝑋𝑖𝑗 is the random variable denoting 

the response to item 𝑗 by examinee 𝑖, and  

 

𝑋𝑖𝑗 = {
1          𝑖𝑓 𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑒 𝑖 ℎ𝑎𝑠 𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑡𝑜 𝑖𝑡𝑒𝑚 𝑗
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
  
        (2) 

 

In addition, for an assessment with 𝐽 total items, let 𝑿𝒊 be the vector of responses for examinee 𝑖 

to all 𝐽 items, or 𝑿𝒊 = (𝑋𝑖1, … , 𝑋𝑖𝐽)
′
. Though different CDMs will have different IRFs, all depend 

upon a structure called the 𝑄-matrix. The 𝑄-matrix is a 𝐽 by 𝐾 matrix in which the element in the 

𝑗𝑡ℎ row and 𝑘𝑡ℎ column is defined by  

 

𝑞𝑗𝑘 = {
1          𝑖𝑡𝑒𝑚 𝑗 𝑡𝑎𝑝𝑠 𝑠𝑘𝑖𝑙𝑙 𝑘
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
 
     (3) 

 

Then the entire 𝑄-matrix row for item 𝑗, indicating all the skills tapped by that item, is denoted 

simply as 𝒒𝒋. Although the basic concept is relatively simple, the construction, validation, and 

refinement of a 𝑄-matrix for an operational diagnostic assessment is currently a topic of much 

discussion (see Chiu, 2013; de la Torre, 2008; and Li & Suen, 2013). 

The particular CDMs used in this study are the deterministic inputs, noisy “and” gate model 

(DINA; Junker & Sijtsma, 2001) and the reduced re-parameterized unified model (RRUM; Hartz, 

2002). The DINA is considered one of the simplest CDMs because it allows each item only two 

parameters, and for a given item the DINA IRF yields only two possible values. This is due to the 

use of the binary indicator 

 

𝜂𝑖𝑗 = ∏ 𝛼
𝑖𝑘

𝑞𝑗𝑘𝐾
𝑘=1 .      (4) 
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If examinee 𝑖 has mastered all the required skills for item 𝑗, then 𝜂𝑖𝑗 = 1; otherwise, 𝜂𝑖𝑗 = 0. The 

DINA IRF for examinee 𝑖 responding to item 𝑗 is defined as  

 

𝑃(𝑋𝑖𝑗 = 1|𝜶𝒊) = (1 − 𝑠𝑗)
𝜂𝑖𝑗

𝑔𝑗
(1−𝜂𝑖𝑗),      (5) 

 

where 𝑠𝑗 = 𝑃(𝑋𝑖𝑗 = 0|𝜂𝑖𝑗 = 1) and 𝑔𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜂𝑖𝑗 = 0). Informally, 𝑠𝑗 is the probability 

that an examinee mastering all required skills  for  item  j suffers a careless “slip” and responds 

incorrectly, while 𝑔𝑗 is the probability that an examinee not mastering at least one required skill 

makes a “lucky guess.”  

 The RRUM, has an IRF given by  

 

𝑃(𝑋𝑖𝑗 = 1|𝜶𝒊) = 𝜋𝑗
∗ ∏ 𝑟

𝑗𝑘

∗(1−𝛼𝑘)𝑞𝑗𝑘 .

𝐾

𝑘=1

 

  

   (6) 

 

Here, 𝜋𝑗
∗ is the probability of a correct response from an examinee who has mastered all skills 

tapped by item 𝑗. The 𝑟𝑗𝑘
∗  parameters can be thought of as penalty parameters reducing the prob-

ability of a correct response when a tapped skill is not mastered. Specifically, if item 𝑗 taps skill 𝑘 

and it has not been mastered by the examinee, the probability of a correct response is reduced by 

a factor of  𝑟𝑗𝑘
∗ . In other words, smaller values of 𝑟𝑗𝑘

∗  result in stricter penalties, i.e., more sharply 

reduced probabilities of a correct response, when skill 𝑘 is not mastered. Thus, smaller values of 

𝑟𝑗𝑘
∗  indicate a stronger relation between the item and the latent skill it taps. For items tapping 𝑘 

skills, the RRUM requires the estimation of (𝑘 + 1) parameters; therefore, it is more complex than 

the DINA model.  

Examinee Classification 

CDM item parameters can be estimated using an expectation-maximization (EM) algorithm 

(de la Torre, 2009, 2011) or Markov chain Monte-Carlo (MCMC) techniques (de la Torre & 

Douglas, 2004; Henson, Templin, & Willse, 2009). Examinees are then classified into one of the 

2𝐾 possible classes, or skill mastery patterns. Different methods of classification have been 

discussed in the literature. De la Torre (2008) stated that classification can be performed via 

maximum likelihood estimation (MLE) or expected a posteriori (EAP); Rupp et al. (2010) 

described EAP and maximum a posteriori (MAP) classification; and Huebner and Wang (2011) 

conducted a simulation study comparing the accuracy of the three methods under different testing 

conditions. Examinee classification is briefly reviewed here, as the general concepts are relevant 

to CD-CAT termination rules described below. 

A key element for examinee classification is the likelihood function for responses 𝑿𝒊, given by  

 

𝐿(𝑿𝒊; 𝜶) = ∏ [𝑃(𝑋𝑖𝑗 = 1|𝜶)]
𝑋𝑖𝑗

𝐽

𝑗=1
[1 − 𝑃(𝑋𝑖𝑗 = 1|𝜶)]

1−𝑋𝑖𝑗
. 

 
     (7) 
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Let 𝑐 be an index for the classes, and 𝑐′ used to denote a particular class. Then, 𝑃(𝜶𝒄′ ) is the prior 

probability of belonging to the particular class 𝑐′. If the priors are assumed to be known for all 2𝐾 

classes, the classification can incorporate them by applying Bayes’ Rule to compute the posterior 

distributions:  

𝜋𝑖(𝜶𝒄′ ) = 𝑃(𝜶𝒄′ |𝑿𝒊) =
𝐿(𝑿𝒊|𝜶𝒄′ )𝑃(𝜶𝒄′ )

∑ 𝐿(𝑿𝒊|𝜶𝒄)2𝐾

𝑐=1 𝑃(𝜶𝒄)
 

  (8) 

 

Then, 𝜶̂𝑀𝐴𝑃, the MAP estimate of 𝜶, is given by  

 
 

𝜶̂𝑀𝐴𝑃 = arg max
𝑐

{𝑃(𝜶𝒄|𝑿𝒊)}.      (9) 

 

The MLE method can be viewed as the MAP method when using a prior distribution in which all 

𝑃(𝜶𝑐) are equal. This estimate is denoted as 𝜶̂𝑀𝐿𝐸.  

CD-CAT 

A large part of the research in the field of CD-CAT has been dedicated to item selection criteria. 

One of the earliest papers to propose an item selection method was by Xu, Chang, and Douglas 

(2003). They demonstrated for fixed-length CD-CAT that choosing items to maximize a criterion 

based upon Kullback-Leibler (KL) information or to minimize the Shannon Entropy (SHE) resul-

ted in higher rates of correctly classifying examinees into their true mastery patterns than random 

item selection. Cheng (2009) proposed the posterior-weighted KL index (PWKL), which was 

shown to select items leading to higher correct classification rates than the original KL method. 

Cheng (2010) also proposed a modified version of the KL index that balanced the number of times 

each skill was tapped in a CD-CAT; this method was termed the maximum modified global 

discrimination index (MMGDI). Wang (2013) proposed mutual information (MUINF) methods of 

item selection for CD-CAT that were shown to lead to more accurate classifications than the 

PWKL in simulated testing conditions. Kaplan et al. (2015) proposed a modified PWKL index 

(MPWKL) and the generalized DINA discrimination index. The present study compared the 

MPWL and MUINF criteria for the first time, and thus both will be reviewed briefly.  

After 𝑡 items have been administered to examinee 𝑖, i.e., stage 𝑡 of the test, the MPWKL 

criterion selects the next item for stage (𝑡 + 1) as the one maximizing the quantity 

 

 
 
 

   
2 2 1

( ) ( )

1 1 0

log ,

K K

j d t t

ij j d i c i d

d c x j c

P X x
MPWKL P X x

P X x
 

  

    
    

      

  
α

α α α
α

 

 

   (10) 

 

where at stage 𝑡, 𝜋𝑖
(𝑡)

(𝜶𝑐 ) is the estimated latent class posterior probability for attribute vector 

𝜶𝑐 , and 𝜋𝑖
(𝑡)

(𝜶𝑑 ) is the estimated latent class posterior probability for attribute vector 𝜶𝑑 . It is 

noteworthy that the MPWKL does not depend on 𝜶̂𝑖
(𝑡)

, the interim classification at stage 𝑡, but 

rather on the entire posterior distribution of the latent classes. This innovation enables the MPWKL 

to be more informative than the more basic PWKL and KL criteria.  

The MUINF criterion also has this property; its formula is given by  
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𝑀𝑈𝐼𝑁𝐹𝑖𝑗 = ∑ 𝜋𝑖
(𝑡)

(𝜶𝑐 ) ∑ 𝑃(𝑋𝑗 = 𝑥|𝜶𝑐)
1

𝑥=0

2𝐾

𝑐=1
𝑙𝑜𝑔 (

𝑃(𝑋𝑗 = 𝑥|𝜶𝑐)

𝑃(𝑋𝑗 = 𝑥)
), 

 

   (11) 

 

where 𝑃(𝑋𝑗 = 𝑥) is the marginal probability of response 𝑥. For 𝑥 = 1, this probability is given by  

 

𝑃(𝑋𝑗 = 1) = ∑ 𝜋𝑖
(𝑡)

(𝜶𝑐 )𝑃(𝑋 = 1|𝜶𝒄)
2𝐾

𝑐=1
. 

 

  (12) 

 

Then, for 𝑥 = 0, 

 

𝑃(𝑋𝑗 = 0) = 1 − 𝑃(𝑋𝑗 = 1).  

 

  (13) 

 

 

The only original work on termination rules for variable-length CD-CAT is by Hsu et al. 

(2013), to the best of the authors’ knowledge. Hsu et al. (2013) defined two different criteria: 

1. Terminate the test at stage 𝑡 when the largest 𝜋𝑖
(𝑡)

(𝜶𝑐 ) is greater than or equal to some pre-

specified probability threshold. 

2. Terminate the test when the largest 𝜋𝑖
(𝑡)

(𝜶𝑐 )  is greater than or equal to some pre-specified 

probability threshold and the second largest 𝜋𝑖
(𝑡)

(𝜶𝑐 )  is less than or equal to a second 

smaller probability threshold. 

The simulation study described below used the first termination criterion. For the sake of 

simplicity, the second criterion was not considered further. Moreover, Hsu et al.’s (2010) 

simulation study demonstrated that the two criteria performed very similarly unless the second 

probability threshold was set close to zero.   

Simulation Study 

A simulation study was performed to examine the classification accuracy and average length 

of a variable-length CD-CAT diagnosing 𝐾 = 6 skills under various testing conditions. Within each 

condition, 𝑁 = 10,000 examinees were administered tests with a maximum length of 30 items. The 

termination threshold was set to 0.80, and a uniform discrete prior distribution was used for all 

conditions. Examinees whose tests were not stopped early via the termination rule were classified 

according to their MAP estimate after the 30th item. Factors manipulated in the study included the 

generating model (DINA or RRUM), 𝑄-matrix composition (low-, medium-, or high-density), 

correlation between skills (𝜌 = 0.3 or 𝜌 = 0.7), and item selection method (MPWKL or MUINF).  

These factors were fully crossed, resulting in 2 × 3 × 2 × 2 = 24 total conditions.  

Item Banks 

Because the RRUM and DINA utilize different parameterizations, two item banks were 

generated, each consisting of 300 items.  For all conditions in which the RRUM was used, the 𝑟𝑗𝑘
∗  

parameters were generated following Feng, Habing, and Huebner (2014), i.e., from the 

Uniform(0.05, 0.40) distribution. The 𝜋𝑗
∗ parameters were generated from the Uniform(0.75, 0.95)  

distribution, used by Wang, Chang, and Huebner (2011) for the 𝜋𝑗
∗ parameters in the Fusion model, 

which has an IRF similar to the RRUM with 𝜋𝑗
∗  having the same interpretation. For conditions in 
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which the DINA was used, the slip and guess parameters were generated from the Uniform(0.05, 

0.25) distribution, as was done in the simulation by Cheng (2010). 

Q-Matrices 

To vary the 𝑄-matrix composition, low-, medium-, and high-density 𝑄-matrices were 

generated so that each skill had a 20%, 40%, and 60% chance, respectively, of being tapped by a 

given item, and items were required to tap at least one skill. This method of randomly constructing 

the 𝑄-matrix was also used in Cheng’s (2010) simulation study; but that study was designed so 

that there was only a 20% chance for a skill to be tapped by an item. To induce correlation among 

skills, a 𝐾-length multivariate normal vector was generated for each examinee with 

 

𝝁 = 𝟎 and 𝚺 = (
1 𝜌
𝜌 1

).  
 (14) 

 

Then, for the 𝑖th simulated examinee, the binary elements of 𝜶𝒊 were created by setting negative 

and positive values to 0 and 1, respectively; and the two levels of 𝜌 used were 0.3 and 0.7.  

Evaluation Criteria 

The results yielded by each condition were evaluated in terms of average test length (ATL) 

and classification accuracy. Specifically, classification accuracy was measured by the proportion 

of examinees classified correctly on all six skills (PCC), as well as by the frequency counts of 

examinees with one, two, three, and four or more skills misclassified.  

Results 

Statistics summarizing classification accuracy and test length for all conditions are reported in 

Table 1. Some trends are readily apparent. First, regardless of model, item selection, or skill 

correlation, the high-density 𝑸-matrices produced a sharp drop in PCC and an increase in ATL 

compared to the low- and medium-density 𝑸-matrices. The relation between the low- and medium-

density 𝑸-matrices is less clear; the medium settings tended to produce higher PCCs as well as 

higher ATLs than the low density. There was little difference between the PCCs and ATLs yielded 

by the different values of skill correlation when the 𝑸-matrix density was low or medium. 

However, for high-density 𝑸-matrices, the lower correlation value yielded noticeably lower ATLs 

(approximately one- to one-and-a-half-fewer items) and higher PCCs. For a given combination of 

generating model, 𝑸-matrix density, and skill correlation, the MPWKL and MUINF selection 

criteria performed very similarly. Figure 1 displays these trends visually for conditions 7–12 and 

19–24, i.e., for conditions using selection via the MUINF criterion. Plots for the MPWKL are 

omitted due to the great similarity with the MUINF. 

The PCCs in Table 1 indicate the rate at which examinees were classified correctly on all skills, 

and Table 2 provides insight into the misclassified examinees. Specifically, Table 2 presents the 

proportion of examinees classified incorrectly on one, two, three, and four or more skills. Again, 

the high-density 𝑄-matrices fared poorly, as they resulted in far more examinees being classified 

incorrectly on three or four skills than did the low- and medium-density 𝑄-matrices. 
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Table 1. Full Results for the Simulation Study 

Condition Model Selection Density 𝜌 ATL PCC 

1 DINA MPWKL Low 0.3 9.55 0.819 

2 DINA MPWKL Low 0.7 9.30 0.802 

3 DINA MPWKL Medium 0.3 9.94 0.838 

4 DINA MPWKL Medium 0.7 10.05 0.835 

5 DINA MPWKL High 0.3 13.71 0.774 

6 DINA MPWKL High 0.7 15.34 0.719 

7 DINA MUINF Low 0.3 9.49 0.823 

8 DINA MUINF Low 0.7 9.35 0.806 

9 DINA MUINF Medium 0.3 9.93 0.834 

10 DINA MUINF Medium 0.7 10.02 0.831 

11 DINA MUINF High 0.3 13.97 0.761 

12 DINA MUINF High 0.7 15.08 0.717 

13 RRUM MPWKL Low 0.3 9.68 0.830 

14 RRUM MPWKL Low 0.7 9.60 0.820 

15 RRUM MPWKL Medium 0.3 10.51 0.837 

16 RRUM MPWKL Medium 0.7 10.61 0.821 

17 RRUM MPWKL High 0.3 13.89 0.800 

18 RRUM MPWKL High 0.7 15.15 0.773 

19 RRUM MUINF Low 0.3 9.64 0.825 

20 RRUM MUINF Low 0.7 9.51 0.809 

21 RRUM MUINF Medium 0.3 10.43 0.828 

22 RRUM MUINF Medium 0.7 10.40 0.822 

23 RRUM MUINF High 0.3 14.04 0.795 

24 RRUM MUINF High 0.7 15.16 0.771 

  

 

Figure 2 illustrates the average number of skills tapped per item at each stage of the test for 

each condition. At the beginning of the tests, the average number of skills tapped per item increased 

for all conditions and peaked at some point between the 5th and 10th item administered for most 

conditions. Around Stage 10, the lines separated into two groups—conditions with low- or 

medium-density 𝑄-matrices and those with high-density matrices. The average number of skills  

tapped per item generally decreased throughout the later test stages for the low- and medium-

density 𝑄-matrices. The pattern was a bit more complex for the high-density 𝑄-matrices. For those 

conditions, there was an initial dip in average skills tapped per item; then there was a steady 

increase throughout the later stages of the tests. 
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Figure 1. PCC vs. ATL for DINA and RRUM Using MUINF   

a. DINA 

 

 
b. RRUM 

 

 
 

Note. Numbered points correspond to condition numbers in Table 1. Conditions with skill correlation 

𝜌 = 0.3 and 0.7 appear as red and blue, respectively. 

Discussion and Conclusions 

To understand the increase in average test length and decrease in classification accuracy 

incurred for denser 𝑄-matrices, it is instructive to explore the effect of the 𝑄-matrix on item 

information using a simple numerical example. Consider a situation in which 𝐾 = 3 skills are 

being assessed in which there are 23 = 8 possible skill patterns:{0,0,0}, {1,0,0}, … , {1,1,1}. 

Furthermore, consider seven items with 𝑄-matrix rows corresponding to the skill patterns, except 

{0,0,0}. To remove the influence of differing item parameters, assume all seven items have the 

same parameters. Specifically, in the case of the RRUM, 𝑟𝑗𝑘
∗ = 0.10 and 𝜋𝑗

∗ = 0.90 for all items 𝑗 

and skills 𝑘; and for the DINA, 𝑔𝑗 = 𝑠𝑗 = 0.10.  

  



Journal of Computerized Adaptive Testing 
Alan Huebner, Matthew D. Finkelman, and Alexander Weissman 

Factors Affecting a Variable-Length CD-CAT  

 

10 |  JCAT  Vol. 6 No. 1   February 2018 

 

Table 2. Proportion of Examinees with One, Two, Three,  

and Four or More Skills Misclassified, by Condition 

     Proportion with Number  

of Misclassified Skills 

Condition Model Selection Density 𝜌 1 2 3 ≥ 4 

1 DINA MPWKL Low 0.3 0.1651 0.0146 0.0014 0.0001 

2 DINA MPWKL Low 0.7 0.1802 0.0166 0.0008 0.0002 

3 DINA MPWKL Medium 0.3 0.1441 0.0162 0.0017 0.0003 

4 DINA MPWKL Medium 0.7 0.1465 0.0167 0.0017 0.0002 

5 DINA MPWKL High 0.3 0.1785 0.0361 0.0095 0.0023 

6 DINA MPWKL High 0.7 0.2222 0.0500 0.0072 0.0013 

7 DINA MUINF Low 0.3 0.1601 0.0157 0.0012 0.0001 

8 DINA MUINF Low 0.7 0.1734 0.0196 0.0012 0.0000 

9 DINA MUINF Medium 0.3 0.1488 0.0149 0.0019 0.0003 

10 DINA MUINF Medium 0.7 0.1521 0.0152 0.0017 0.0004 

11 DINA MUINF High 0.3 0.1837 0.0428 0.0112 0.0018 

12 DINA MUINF High 0.7 0.2236 0.0513 0.0063 0.0019 

13 RRUM MPWKL Low 0.3 0.1558 0.0126 0.0011 0.0001 

14 RRUM MPWKL Low 0.7 0.1670 0.0124 0.0006 0.0000 

15 RRUM MPWKL Medium 0.3 0.1457 0.0161 0.0013 0.0000 

16 RRUM MPWKL Medium 0.7 0.1622 0.0159 0.0010 0.0001 

17 RRUM MPWKL High 0.3 0.1647 0.0311 0.0038 0.0005 

18 RRUM MPWKL High 0.7 0.2024 0.0223 0.0021 0.0001 

19 RRUM MUINF Low 0.3 0.1651 0.0146 0.0014 0.0001 

20 RRUM MUINF Low 0.7 0.1802 0.0166 0.0008 0.0002 

21 RRUM MUINF Medium 0.3 0.1441 0.0162 0.0017 0.0003 

22 RRUM MUINF Medium 0.7 0.1465 0.0167 0.0017 0.0002 

23 RRUM MUINF High 0.3 0.1785 0.0361 0.0095 0.0023 

24 RRUM MUINF High 0.7 0.2222 0.0500 0.0072 0.0013 

 

 

Also, assume that the prior probability of each skill pattern was set to 1/8 for each pattern. 

Thus, the example is designed so that the only difference between the items is the number of skills 

they tap. Table 3 shows the amount of information (both MUINF and MPWKL) in each item for 

each skill pattern. Clearly, under both information criteria, the items tapping fewer skills have 

more information.   

Of course, these calculations are merely illustrative. A formal proof that item information 

decreases for any CDM and all 𝐾 values as more skills are tapped is beyond the scope of this paper. 

However, the results of the simulation with 𝐾 = 6 are consistent with Table 3, i.e., the longer 

ATLs and smaller PCCs incurred under conditions with dense 𝑄-matrices were due to those items  

being less informative than those in the low- or medium-density conditions. Some intuition for the 

mutual information (MI) criterion can be gained from adapting the explanation of Weissman 

(2007) to the context of CDMs. The symmetric nature of MI can allow it to be interpreted both as 
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(1) the reduction in uncertainty in 𝜶𝒊 if item 𝑗 were administered and (2) the reduction in 

uncertainty of predicting item response 𝑋𝑖𝑗 if item 𝑗 were administered, given current knowledge 

of 𝜶𝒊. The latter interpretation seems to be helpful for the present case. It is reasonable to consider 

that as more skills are tapped by an item, the response to that item becomes more uncertain, as the 

successful application of each individual skill is a random event itself in the CDM framework. 

 

Figure 2.  Mean Number of Skills per Item by Test Stage and Testing Condition 
 

  
 

  
 

 
 

Note. Each line in each plot corresponds to a different testing condition, broken down by 𝑄-matrix 

density. The x-axis of the plot begins at Stage 2 (second item administered), since the first item is drawn 

randomly. The y-axis represents the mean number of skills tapped per item at each test stage. 
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Table 3. MUINF and MPWKL under the DINA and RRUM  

by Q-Matrix Row for 𝑲 = 𝟑 Example  
 

DINA RRUM 

Row MUINF MPWKL MUINF MPWKL 

{1,0,0} 0.368 0.879 0.379 0.913 

{0,1,0} 0.368 0.879 0.379 0.913 

{0,0,1} 0.368 0.879 0.379 0.913 

{1,1,0} 0.286 0.659 0.340 0.865 

{0,1,1} 0.286 0.659 0.340 0.865 

{1,0,1} 0.286 0.659 0.340 0.865 

{1,1,1} 0.175 0.385 0.248 0.636 

 

It is worthwhile to emphasize that the calculations displayed in Table 3 were performed 

assuming each skill pattern is equally likely.  During the actual CD-CAT, however, the posterior 

distribution of each pattern was updated after each item was administered; the probability of each 

pattern was not equal, of course.  In actual testing, sometimes an item tapping more skills might 

be more informative than one tapping fewer skills, depending on the posterior distribution of the 

skill patterns as well as the item parameters. 

Although it is difficult to make direct comparisons due to differences in study designs, it is 

interesting to note that the patterns observed in Figure 2 for the number of skills tapped with the 

test stage follow similar trends as those reported by Kaplan et al. (2015). In particular, when 

employing the DINA model along with the GDI, Kaplan et al. (2015) show in their Figure 4 that 

for a fixed 𝐾 = 5 true attribute vector {11100}, items measuring only a single skill were more 

frequently selected at the earlier stages of the CD-CAT (i.e., between one and five items 

administered), after which the mean number of skills increased to approximately 1.65 for the 

remaining stages (i.e., between 6 and 20 items administered).   

This general trend can also be observed in Figure 2, where items measuring fewer skills were 

also selected more frequently at the earlier stages of the CD-CAT, keeping in mind that Figure 2 

summarizes results across all examinees’ attribute patterns, whereas Kaplan et al.’s (2015) 

Figure 4 is for a single attribute pattern. 

Conclusions 

This study systematically varied a number of factors in a variable-length CD-CAT in order to 

examine their effects on average test length and classification accuracy, specifically, the generating 

model, the denseness of the 𝑄-matrix, the item selection method, and the correlation between 

skills. It is hoped that the results will further the understanding of the fundamentals of CD-CAT 

as well as point out issues to those working to implement CD-CAT in an actual classroom setting. 

In particular, although CDMs have been touted for their multidimensional nature (Rupp & 

Templin, 2008; Rupp et al., 2010), there have previously been little to no recommendations as to 

how 𝑄-matrices should be constructed to ensure efficient CD-CATs.  

This appears to be the first study to vary the density of the 𝑄-matrix for a variable-length CD-

CAT.  The results suggest that low- to medium-density 𝑄-matrices result in higher PCCs and 

shorter average ATLs, as compared to high-density 𝑄-matrices. This seems to imply that, in 

practice, items should be written to tap as few skills as possible. Depending on the subject matter, 
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however, it might not always be possible to write items that tap only one skill at a time. For 

example, items on an assessment covering a complex topic, such as advanced mathematics, might 

each tap at least several skills. Also, if the number of skills 𝐾 is very large, it might be impractical 

to assess one skill at a time. 

No single simulation study can examine effectively and coherently all possible factors 

affecting the classification accuracy and average test length of a CD-CAT. In future studies, 

researchers might wish to vary design elements such as 𝐾, generating CDM, item bank size, and 

test length. Although this study has looked at only a relatively small number of testing conditions, 

it has broached this practical subject for future studies to consider, as well. Finally, this study 

emphasizes the importance of the 𝑄-matrix to CDM methodology in general. A clearer under-

standing of Q-matrix construction should help in designing and maintaining operational CD-

CATs. 
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