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A recent paper proposed an item-selection approach for computerized adaptive testing 
(CAT) in which the psychometric information per time unit is maximized. The current re-
search extended this methodology to adaptive tests combined with use of a cognitive di-
agnostic model (CDM). Two new item-selection methods are introduced for the combina-
tion of CDMs and CAT: posterior-weighted Kullback-Leibler information per-time-unit, 
and mutual information per-time-unit. These methods were compared with standard pro-
cedures in which the amount of time required to complete an item is not considered. Sim-
ulation conditions with and without attribute-balancing constraints indicated that, on av-
erage, the new methods required more items but took less time than the standard proce-
dures, while achieving comparable classification accuracy.  
 
Keywords: computerized adaptive testing, cognitive diagnostic models, Kullback-Leibler 
information, mutual information, diagnostic testing.  
  
 
In the past several decades, much research has sought to enhance the diagnostic power of as-

sessments through the simultaneous measurement of multiple examinee attributes (de la Torre, 
Song, & Hong, 2011; Haberman & Sinharay, 2010; Hamilton, Nussbaum, Kupermintz, 
Kerkhoven, & Snow, 1995; Yao & Boughton, 2007). A popular psychometric framework to fa-
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cilitate this goal is provided by cognitive diagnostic models (CDMs; DiBello, Roussos, & Stout, 
2007; Leighton & Gierl, 2007; Rupp, Templin, & Henson, 2010). In CDMs, each examinee’s 
latent state is described by a K-vector 1( ,..., ),Kα α=α  where the individual elements of the vec-
tor refer to the different attributes being studied. In most formulations of CDMs, including that 
of the current research, each element of the vector takes on a value of 0 or 1, with 0 indicating 
“non-mastery” and 1 indicating “mastery” in the context of an educational assessment. Exami-
nees who complete the test typically receive feedback on each attribute, rather than a single 
summative score (Cheng, 2009).  

A number of recent papers have studied the combination of CDMs and computerized adap-
tive testing (CAT; Cheng, 2009; Hsu, Wang, & Chen, 2013; Huebner, 2010; Liu, Ying, & 
Zhang, 2013; Mao & Xin, 2013; McGlohen & Chang, 2008; Tatsuoka & Ferguson, 2003; Wang, 
2013; Wang, Chang, & Huebner, 2011; Xu, Chang, & Douglas, 2003). In CAT, the items pre-
sented to a given examinee are dependent on his/her responses to previous items. CAT thus al-
lows for an assessment that is tailored to the examinee taking it, with items targeted to provide 
information about the given examinee’s unknown latent trait(s). Numerous studies have found 
that CAT achieves substantially greater measurement efficiency than traditional paper-and-pencil 
tests (Gibbons et al., 2008; Moreno, Wetzel, McBride, & Weiss, 1984; Smits, Zitman, Cuijpers, 
den Hollander-Gijsman, & Carlier, 2012; Weiss, 1982). 

A fundamental element of a CAT is the procedure by which it chooses the next item for an 
examinee (i.e., the item-selection method). For applications of CAT using unidimensional item 
response theory (IRT), the classic item-selection approaches maximize Fisher information (Lord, 
1980; van der Linden & Pashley, 2000) or Kullback-Leibler information (Chang & Ying, 1996). 
The latter approach is more useful for CDMs because unlike Fisher information, Kullback-
Leibler information is defined when the latent variable to be measured is in discrete classes 
(Cheng, 2009). A number of item-selection methods, based on Kullback-Leibler information or 
related indexes, have been proposed in the context of CDMs. These methods include maximum 
Kullback-Leibler information (Xu et al., 2003), maximum hybrid Kullback-Leibler information 
(Cheng, 2009), maximum posterior-weighted Kullback-Leibler information (PWKL; Cheng, 
2009), minimum expected Shannon entropy (Tatsuoka, 2002; Xu et al., 2003), and maximum 
mutual information (MI; Wang, 2013). 

One important property shared by all of the preceding methods is that they adhere to the tra-
ditional notion of efficiency in CAT: they seek to select items that provide maximum infor-
mation. As described in Fan, Wang, Chang, and Douglas (2012), however, efficiency can also be 
described in terms of information per time unit. That is, in the formulation of Fan et al., the ex-
aminee’s expected response time on an item is considered, in addition to the information that the 
item provides in estimating the examinee’s trait level. Items with less than maximal information 
might be presented if they are expected to be answered quickly. Fan et al. showed that by incor-
porating anticipated response times into the item-selection process, information can accrue more 
rapidly in terms of the amount of time spent on the test. Thus, the efficiency of measurement can 
be improved when the time taken to complete the assessment is considered to be an important 
outcome. 

Although the simulation results of Fan et al. (2012) demonstrated the utility of their ap-
proach, the study focused on applications involving unidimensional IRT models, so the extension 
of their methodology to CDMs is an open problem. The objective of the current study was to fill 
this gap by developing item-selection methods that incorporate response times for tests that use 
CDMs. In particular, two new item-selection methods are introduced and compared to existing 
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procedures in simulation. One of the new methods is a variant on PWKL item selection; the oth-
er method is a variant on MI item selection. Both variants account for a given examinee’s ex-
pected response time to an item, in addition to the item’s discriminatory power about the exami-
nee’s latent state .α  PWKL was chosen for the study because this method performed well in sim-
ulations by Cheng (2009) and was also used successfully by Hsu et al. (2013). MI was chosen 
both on theoretical and practical grounds: it is a fundamental quantity in information theory 
(Cover & Thomas, 1991) and it performed well in simulations by Wang (2013). The ideas of the 
current paper could also be applied to Kullback-Leibler information (Xu, Chang, & Douglas, 
2003) and hybrid Kullback-Leibler information (Cheng, 2009). 

Cognitive Diagnostic Models 
As mentioned above, CDMs define an examinee’s latent state via a vector 1( ,..., )Kα α=α  

identifying the attributes mastered by the examinee ({ :  1})kk α =  and the attributes not mastered 
by the examinee ({ :  0})kk α = . Another important quantity in CDMs is the Q-matrix (Tatsuoka, 
1985), which shows the items that measure each attribute. Letting I denote the number of items 
under study, the Q-matrix has I rows and K columns. The [ , ]i k  entry of the Q-matrix, ikq , is then 
defined as 1 if item i measures attribute ,k  and 0 if it does not. For instance, if the first four rows 
of a Q-matrix are  

1 0 1 0 0
0 0 0 1 0

,
1 1 0 0 1
0 1 1 0 0

 
 
 
 
 
 

 

 
 
(1) 

 
then item 1 measures the first and third attributes, item 2 measures only the fourth attribute, item 
3 measures the first, second, and fifth attributes, and item 4 measures the second and third attrib-
utes. The Q-matrix can be determined a priori by content experts (Cheng, 2009; Hsu et al., 
2013), although it can also be identified, validated, or refined via empirical evidence (Chiu, 
2013; de la Torre, 2008; Liu, Xu, & Ying, 2012). 

A variety of different CDMs have been developed and studied (DiBello et al., 2007). Some 
examples are the deterministic input, noisy “and” gate (DINA) model (Haertel, 1989; Junker & 
Sijtsma, 2001), the deterministic input, noisy “or” gate (DINO) model (Templin & Henson, 
2006), the noisy input, deterministic “and” gate (NIDA) model (Junker & Sijtsma, 2001; Maris, 
1999), and the reparameterized unified model (RUM; Roussos et al., 2007). The theoretical un-
derpinnings of a model from a cognitive psychology perspective (Rupp & Templin, 2008) should 
be considered in any application, as well as the fit of the model to the data (de la Torre & Doug-
las, 2004). 

Although each CAT item-selection method examined here is applicable to all of the CDMs 
mentioned above, the simulation study presented below used the RUM. A fundamental aspect of 
the RUM is that it considers the probability of an individual attribute being applied correctly to 
an item, given the examinee’s mastery level of the attribute. In particular, let ikY  be an indicator 
variable representing whether a given examinee successfully applies attribute k to item i; to sim-
plify, notation for the indexing of examinees is suppressed. The probability that attribute k is 
successfully applied to item i, given that attribute k has been mastered by the examinee, is then 
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defined as ( 1| 1).ik ik kπ P Y α= = =  Next, denote by *
iπ  the probability that all attributes measured 

by item i are successfully applied to the item—hence, the item is answered correctly—given that 
all such attributes have been mastered. Assuming local independence between the attributes, and 
recalling that attribute k is measured by item i if and only if 1ikq = , 
 

*

1

K
ik

i ik
k

qπ π
=

=∏  
 
(2) 

 
(Roussos et al., 2007).  

Because the value in Equation 2 corresponds to an examinee who has mastered all attributes 
relevant to item i, the chance of a correct response to this item can be no greater than *.iπ  In oth-
er words, *

iπ  represents the upper bound for the chance of a correct response to item i. This up-
per bound is obtained for examinees who have mastered all attributes that are measured by the 
item. The chance of a correct response can be lower than *

iπ if one of the relevant attributes has 
not been mastered. Let ( 1| 0)ik ik kr P Y α= = =  represent the probability that attribute k is success-
fully applied to item i, given that attribute k has not been mastered by the examinee. It is as-
sumed that ,ik ikr π≤  so that the probability of successful application is not higher by a non-
master of the attribute than by a master. Let * ;ik ik ikr r π=  note that * 1ikr ≤  and a value closer to 0 
indicates greater discrimination between masters and non-masters of the attribute. Under the “re-
duced” form of the RUM, the probability of a correct response to item i, given an underlying ex-
aminee attribute pattern of ,α  is  
 

( )iP α  * *

1

(1 )K
k ik

i ik
k

qr απ
=

−= ∏  
 
(3) 

 
(Roussos et al., 2007). Here the product term serves to lower the probability of a correct response 
for examinees who have not mastered some relevant attributes. The reduced RUM is a special 
case that simplifies the RUM model by excluding a term related to “supplemental” abilities that 
are outside of the Q-matrix. See Roussos et al. for technical details; see Kim (2011) for a recent 
application of the reduced RUM.  

Methods for CAT Item Selection with CDMs 
It is assumed that item parameters have been obtained for a specific model (i.e., a CDM) and 

are treated as known. It is further assumed that a prior distribution 0 ( )p α  has been placed on the 
2K  possible attribute patterns, such that 0 ( ) 1p =∑

α
α  and all 0 ( ) 0p ≥α . This prior distribution is 

updated after each item, so that after m items have been administered, the posterior probability of 
a given attribute pattern α' is equal to  
 

[ ]

[ ]

0
1

0
1

1( ') ( ') 1 ( ')
( ) .

1( ) ( ) 1 ( )

m
ii

i i
i

m m
ii

i i
i

uup P P
p

uup P P

=

=

−−
=

−−

∏

∑ ∏
α

α α α
α'

α α α
 

 
 
(4) 
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Here, iu  is the examinee’s response to item i (0 = incorrect, 1 = correct), and  

[ ]1( ') 1 ( ') ii
i i

uuP P −−α α  is the likelihood of α'with respect to the response iu  (i.e., the modeled 
probability that an examinee with attribute pattern α' would produce the response iu to item i). 
The product assumes local independence, whereas the denominator ensures that the set of poste-
rior probabilities sums to 1. 

After all posterior probabilities have been computed, the maximum a posteriori (MAP) esti-
mate of α can be obtained. The MAP estimate after m items is defined as  

  ˆ arg max { ( )},m a mp=α α  which makes it the attribute pattern with the largest posterior probabil-
ity of being the examinee’s true state. 

The posterior-weighted Kullback-Leibler (PWKL) criterion. The PWKL criterion is 
based on the notion of Kullback-Leibler information, which has been described elsewhere 
(Chang & Ying, 1996; Cover & Thomas, 1991), including in the context of CDMs (Henson & 
Douglas, 2005). A brief summary is given here and formal details are provided in the Appendix. 
Briefly, let ( , )iK α' α''  denote the Kullback-Leibler information of item i for attribute patternsα'  
andα''.  A larger value of ( , )iK α' α'' indicates that underα', item i provides more information to 
discern between α'  and α'' .  

PWKL sums multiple ( , )iK α' α'' values per item and then compares the results across items, 
thereby creating a criterion for CAT item selection. Because ˆmα  is the most likely attribute pat-
tern for the given examinee (according to the posterior distribution after m items), the focus is on 
the Kullback-Leibler values that involve this pattern. In particular, the Kullback-Leibler infor-
mation between ˆmα and every other attribute patternα''  is computed (setting ˆm=α' α ). The re-
sults are then summed across ,α''  weighting the Kullback-Leibler values by the posterior proba-
bility of α'' in order to give greater influence to attribute patterns that are more likely to be the 
true state. Mathematically, the PWKL value for item i after the administration of m items is equal 
to  

ˆ = ( , ) ( )m
i i m mPWKL K p∑

α''
α α'' α''  (5) 

 
(Cheng, 2009). The item with the largest m

iPWKL  value, among the set of eligible items in the 
bank, is then selected to be item 1m + of the test (Cheng, 2009). 

The mutual information (MI) criterion. Because MI has been thoroughly treated else-
where (Cover & Thomas, 1991; Wang & Chang, 2011; Weissman, 2007), including in the con-
text of CDMs (Wang, 2013), this section provides only a brief account of MI, with formal details 
in the Appendix. MI has been described as measuring “the reduction in the uncertainty of one 
random variable due to the knowledge of the other” (Cover & Thomas, 1991, p. 18). In the con-
text of CDMs, interest lies in reducing the uncertainty of α because of knowledge of an exami-
nee’s response to an item.  

To use MI as an item-selection criterion with CDMs, this information index must be comput-
ed for every candidate item after each stage of the test. Denote iU  as a random variable indicat-
ing the examinee’s response to item i (for dichotomous items, 0iU =  or 1iU = ). As previously, 
let iu represent the examinee’s actual response to item i, that is, the realized value of .iU  Let 
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( 1)m iP U =  and ( 0)m iP U =  denote the marginal probabilities of a correct answer and incorrect 
answer, respectively, to item i after m items have been administered. For a given attribute pattern 
α''' , let ( , 1)m iP U =α'''  denote the joint probability of α''' and a correct response to item i after 
m items, and ( , 0)m iP U =α''' denote the joint probability of α''' and an incorrect response to item 
i after m items. The MI between α and the response to item i, following the administration of m 
items, is then  

1

0

( , )( ; ) ( , ) log ,
( ) ( )i

m i i
m i m i i

u m m i i

P U uI U P U u
p P U u=

=
= =

=∑∑
α'''

α'''α α'''
α'''

 
 
(6) 

 
where ( )mp α''' is again the posterior probability of α'''  after m items. Larger values of ( ; )m iI Uα  
indicate greater information; hence, the item with the largest ( ; )m iI Uα value, among the set of 
eligible items in the bank, is selected to be item 1m +  of the test.  

Methods incorporating response times. The majority of response-time models, including 
the one used in this research, relate an examinee’s observable response times to a latent variable 
representing the examinee’s speed. Let iT  denote a random variable representing the amount of 
time spent by an examinee on item i (for simplicity, the notation for examinee indexing is sup-
pressed). Let it  denote the realized value of .iT  Finally, let τ  denote the examinee’s latent speed 
(examinees with higher values of τ  tend to have faster responses). Under the model of van der 
Linden (2006), which was used in the current study, the density of iT  for an examinee of speed 
τ  is given by  
 

[ ]21( ; , , ) exp (ln ( )) .
22

i
i i i i i i

i

Af t A A t
t

τ β β τ
π

 = − − − 
 

 
 
(7) 

 
Here iβ  is the “time intensity” parameter of item i (a larger value of iβ  indicates that the item 
tends to require more time). iA is a parameter that gives the item’s discriminatory power for dis-
tinguishing different values of τ  (greater discriminatory power is obtained with a higher value 
of iA ). Note that the latter parameter is usually represented by ;iα iA  is used here to avoid con-
fusion with the examinee’s attribute pattern, which is denoted by .α  Equation 7 assumes that iT  
is lognormal (i.e., the logarithm of iT  follows the normal distribution). The mean and standard 
deviation of this normal distribution are iβ τ−  and 1 ,iA  respectively. 

During the test, an examinee’s latent speed can be estimated, based on responses to previous 
items. In particular, after m items have been administered, the maximum likelihood estimate 
(MLE) of τ  is equal to  
 

2

1

2

1

( ln )
ˆ

m

i i i
i

m m

i
i

A t

A

β
τ =

=

−
=
∑

∑
 

 
 
(8) 

 
(van der Linden, 2011a). ˆmτ  can then be used to estimate the amount of time that an examinee 
will spend on any item i. Specifically, the expected amount of time spent on item i, assuming a 
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latent speed of ˆ ,mτ  is given by 
 

2

1ˆ ˆE( | ) exp
2i m i m

i

T
A

τ β τ
 

= − + 
 

 
 
(9) 

 
(Fan et al., 2012).  

Response-time models have been used for a number of purposes, including detecting collu-
sion between examinees (van der Linden, 2009a), setting time limits on tests (van der Linden, 
2011b), and assembling tests with constraints on speededness (van der Linden, 2011a). Fan et al. 
(2012) used response-time models to create a CAT item-selection method that enhances time ef-
ficiency. For a unidimensional IRT model, let θ  represent an examinee’s latent level of ability, 

m̂θ  its MLE after m items, and ˆ( )i mI θ  the Fisher information of item i at ˆ .mθ  Instead of basing 
item selection solely on the latter quantity, which is a traditional approach for unidimensional 
CAT (Lord, 1980; van der Linden & Pashley, 2000), Fan et al. maximized information per time 
unit, i.e., they proposed selecting the item that maximizes   

ˆ( ) ,
ˆE( | )

i m

i m

I
T
θ
τ

 
 
(10) 

 
among the set of eligible items in the bank. This criterion takes into account not only the amount 
of information provided by a given item, but also its expected time. Hence, if two items (“Item 
A” and “Item B”) have equal Fisher information, but Item A’s expected time is less than Item 
B’s, the former is preferred to the latter. For the lognormal model of van der Linden (2006), the 
denominator of Equation 10 is given by Equation 9; it is assumed that all response-time parame-
ters have been estimated and are treated as known. Such estimation can be accomplished via 
computer-based pretesting, for which the response time is logged for each examinee and item 
(van der Linden, 2011b). The unit of time used in the response-time model (e.g., seconds, 
minutes) does not affect the item chosen. 

To extend this approach to CDMs, m
iPWKL  or ( ; )m iI Uα  is substituted into Equation 10 in 

place of ˆ( ).i mI θ  The PWKL per-time-unit criterion is thus 
 

ˆ( , ) ( )
 = ;

ˆ ˆE( | ) E( | )

m i m m
i

i m i m

K p
PWKL

T Tτ τ

∑
α''

α α'' α''
 

 
(11) 

   
and the MI per-time-unit criterion is   

1

0

( , )( , ) log
( ) ( )( ; )  = .

ˆ ˆE( | ) E( | )
i

m i i
m i i

u m m i im i

i m i m

P U uP U u
p P U uI U

T Tτ τ
=

=
=

=∑∑
α'''

α'''α'''
α'''α

 

 
 
(12) 

   
Again, when using the lognormal model of van der Linden (2006), the denominator of Equations 
11 and 12 are given by Equation 9. The two new item-selection methods introduced in this paper 
are designed to maximize Equation 11 or 12 among the set of eligible items in the bank. 

Interestingly, when using Equation 11 or 12 as an item-selection criterion, precise estimation 
of ˆmτ  becomes unnecessary, because of the separability of the person and item parameters in the 
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conditional expectation in Equation 9 that appears in the denominator of both Equations 11 and 
12. That is, Equation 9 can be factored as  

2

1ˆ ˆ( | ) exp( ) exp
2i m m i

i

E T
A

τ τ β
  

= − +  
  

 
 
(13) 

   
(van der Linden, 2011a); hence for any item i, the estimated person parameter ˆ( )mτ is separable 
from the item parameters ( iA  and ).iβ  For a given examinee, ˆexp( )mτ−  remains constant when 
evaluating the PWKL or MI per-time-unit criterion for all eligible items, so the item selected by 
maximizing either criterion does not depend on the specific value of ˆmτ . In fact, any value of τ  
would result in the selection of the same item as that chosen when ˆmτ  is used. In this paper, ˆmτ  
was used in Equations 11 and 12 to promote consistency with the formulation of Fan et al. 
(2012); in practice, an arbitrary value of τ  (such as 0)=τ  can be used equivalently.  

Simulation Design 
A simulation study was conducted to compare the four CAT item-selection methods outlined 

above: PWKL, MI, PWKL per-time-unit, and MI per-time-unit. The investigation used a synthet-
ic item bank that had previously been used for simulation by Finkelman, Kim, and Roussos 
(2009) and Finkelman, Kim, Roussos, and Verschoor (2010). This item bank contained 300 
items following the reduced RUM. A total of five attributes were under study; the Q-matrix was 
composed so that the mean number of attributes measured per item was two (specifically, 80 
items measured one attribute, 140 items measured two attributes, and 80 items measured three 
attributes). The particular attribute(s) measured by a given item were chosen at random, with 
each attribute having an equal chance of representation. For the item parameters of the reduced 
RUM, *

iπ  values were randomly sampled from the uniform distribution with a lower bound of 
0.75 and an upper bound of 0.95, and *

ikr  values were sampled from the uniform distribution with 
a lower bound of 0.40 and an upper bound of 0.85. These bounds were selected so that results 
would be comparable to the results found empirically by Jang (2005, 2006) and Roussos, Hartz, 
and Stout (2003).  

Because there were five attributes under study, there were 52 32=  possible attribute patterns 
(i.e., 32 possible manifestations of the vector α ). Each attribute pattern was assumed to have a 
prior probability of 0 ( ) 1/ 32.p =α  One hundred simulated examinees (“simulees”) with each at-
tribute pattern were generated, for a total of 3,200 simulees. A discrete uniform prior had also 
been employed by Cheng (2009) to represent the case in which the prior distribution is unin-
formative.  

For parameters related to the response-time model, iA was sampled from the uniform distri-
bution with a lower bound of 2 and an upper bound of 4, and iβ was sampled from the normal 
distribution with a mean of 0 and a variance of 0.25. The speed parameter τ  was sampled from 
the standard normal distribution. All of these parameters were chosen to match a simulation con-
dition of Fan et al. (2012).  

All item responses and response times were generated at the start of the study; it was then de-
termined post-hoc which items would be selected by each item-selection method if administra-
tion were conducted adaptively. For the PWKL and PWKL per-time-unit methods, the MAP es-
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timate ˆmα  might not be unique (i.e., multiple α vectors might be “tied” for being the MAP). The 
chance that the MAP lacks uniqueness generally depends on both the stage of the test and the 
prior distribution for .α  If there is a discrete uniform prior distribution on ,α  then all attribute 
patterns are necessarily “tied” for being the MAP before the first item is administered. Under this 
prior distribution, it is also common for ties to occur in the initial stages of testing. Later in the 
test, the posterior probabilities of the different attribute patterns typically become sufficiently 
diffuse that ties are unlikely. In this study, when ties occurred, the calculations of Equations 5 
and 11 were done for each ˆmα value (i.e., each value tied for being the MAP), and the results 
were averaged. The MI and MI per-time-unit criteria do not require a definition of ˆmα in the 
item-selection process and therefore did not need this method of averaging. 

Two levels of attribute balancing constraints on item selection were studied. In the first level, 
item selection was unconstrained: the PWKL, MI, PWKL per-time-unit, and MI per-time-unit 
criteria were administered in their forms as mentioned above. In the second level, item selection 
was constrained by an attribute balancing rule after the administration of the first item, which 
itself was unconstrained. Specifically, the attribute balancing rule required that the selected item 
measure the attribute that had been measured the fewest times previously for the simulee being 
examined. If there was a tie for least representation among two or more attributes, the selected 
item was constrained to measure at least one of the attributes that was part of the tie. The item 
with the largest value of a given method (PWKL, MI, PWKL per-time-unit, or MI per-time-unit), 
among the set of eligible items satisfying the constraint, was then defined as the item selected by 
that method. 

To determine when to halt test administration and make a final estimate of ,α a variable-
length procedure proposed by Hsu et al. (2013) was adopted. Specifically, the test was ended as 
soon as the following two conditions were both satisfied: (1) one of the candidate attribute pat-
terns (i.e., the MAP estimate ˆmα ) had a posterior probability of 0.80 or greater, and (2) none of 
the other attribute patterns had a posterior probability greater than 0.10. The values 0.80 and 0.10 
were mentioned by Hsu et al. as appropriate for low-stakes (diagnostic) tests. After testing was 
stopped, the MAP estimate was used as the final estimate of .α  

The following outcomes were recorded for each item-selection method under study: 
1. The proportion of simulees for whom attribute k was classified correctly, 1,...,5.k =  
2. The proportion of simulees for whom the entire estimated attribute pattern was correct 

(i.e., for whom all five attributes were classified correctly). 
3. The mean number of items administered. 
4. The mean amount of time required to complete the test.  

Results 
Table 1 displays the results for the unconstrained condition, in which attribute balancing was 

not enforced. The table shows that the classification accuracy rates were high: the proportion of 
correct classifications was at least 0.94 for every combination of attribute and item-selection 
method. The accuracy rates were also similar across the item-selection methods: for each attrib-
ute, the proportion of correct classifications never differed by more than 0.01 across the different 
methods. Furthermore, the proportion of simulees for whom the entire attribute pattern was clas-
sified correctly was either 0.82 or 0.83 for every item-selection method. The latter result is con-
sistent with the requirement that the posterior probability of an attribute pattern be at least 0.80 
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before termination can occur. 
The last two columns of Table 1 indicate that for the unconstrained condition, the choice be-

tween the standard methods (PWKL and MI) and their respective per-time-unit versions was 
consequential in terms of respondent burden. Use of PWKL per-time-unit, rather than PWKL, 
resulted in a 19% increase in the mean number of items administered (from 24.3 to 28.8 items), 
but a 34% decrease in the mean amount of time required to complete the test (from 47.6 to 31.2 
time units). The use of MI per-time-unit, rather than MI, resulted in a 21% increase in the mean 
number of items administered (from 24.1 to 29.1 items), but a 30% decrease in the mean amount 
of time required to complete the test (from 44.9 to 31.4 time units). These results were consistent 
with the respective goals of the different methods: PWKL and MI seek to select the most in-
formative items, thus achieving a low average number of items administered, whereas their per-
time-unit versions seek to administer the most time-efficient items, reducing the mean amount of 
time spent on the test. Note that the choice of units used to measure time (e.g., half-minutes, 
minutes) does not affect the percentage decrease in mean testing time achieved by the per-time-
unit methods. 

 
Table 1. Results for Unconstrained Item Selection (N = 3,200 Simulees) 

  Proportion of Correct Classifications by Attribute 
Mean 
No. of  
Items 

Mean 
Time  

Required 

 
 
Method 

 
Attribute 

1 

 
Attribute  

2 

 
Attribute 

 3 

 
Attribute  

4 

 
Attribute  

5 

Entire  
Attribute 
Pattern 

PWKL 0.96 0.94 0.96 0.96 0.96 0.83 24.3 47.6 
PWKL Per- 
Time-Unit 0.96 0.94 0.96 0.96 0.97 0.83 28.8 31.2 

MI 0.96 0.95 0.95 0.96 0.96 0.82 24.1 44.9 
MI Per- 
Time-Unit 0.96 0.95 0.95 0.96 0.96 0.82 29.1 31.4 

  
One final comparison to be made from Table 1 is the comparison between the PWKL-based 

and MI-based procedures (i.e., PWKL versus MI, and PWKL per-time-unit versus MI per-time-
unit). The table shows that for the unconstrained condition, the difference between PWKL and 
MI was relatively small in terms of respondent burden. Use of MI in place of PWKL resulted in 
a 1% decrease in the mean number of items administered (from 24.3 to 24.1 items) and a 6% de-
crease in the mean time required (from 47.6 to 44.9 time units). Use of MI per-time-unit resulted 
in a 1% increase in the mean number of items administered (from 28.8 to 29.1 items) and a 1% 
increase in the mean time required (from 31.2 to 31.4 time units). 

Table 2 displays the results for the constrained condition, in which attribute balancing was 
required. As in the previous condition, classification accuracy rates were high (at least 0.94 for 
every combination of attribute and item-selection method) and similar across item-selection 
methods (the difference between methods was no more than 0.02 for any attribute). The propor-
tion of simulees for whom the entire attribute pattern was classified correctly was again either 
0.82 or 0.83 for all methods. 

A comparison of the constrained condition to the unconstrained condition shows that the 
former resulted in greater respondent burden than the latter. In particular, both the mean number 
of items and the mean time required were higher in the constrained condition. These results were 
anticipated; because the constrained condition did not allow the methods to select items based 
purely on their discriminatory power, it was expected that more items and time would be needed 
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to reach the same level of classification accuracy. Another way to understand the comparison 
between the constrained and unconstrained conditions is to note that with a relatively uniform 
representation of attributes in the item bank, the unconstrained item-selection methods implicitly 
tended to measure each attribute approximately (but not exactly) the same number of times (re-
sults not shown). Enforcing explicit constraints on attribute balance influenced item selection 
and resulted in reduced efficiency.  
 

Table 2. Results for Constrained Item Selection (N = 3,200 Simulees) 
  Proportion of Correct Classifications by Attribute 

Mean 
No. of  
Items 

Mean 
Time 

 Required 

 
 
Method 

 
Attribute 

 1 

 
Attribute 

 2 

 
Attribute  

3 

 
Attribute 

 4 

 
Attribute 

 5 

Entire  
Attribute  
Pattern 

PWKL 0.96 0.95 0.96 0.97 0.96 0.83 32.1 62.0 
PWKL Per- 
Time-Unit 0.96 0.95 0.96 0.97 0.96 0.83 36.5 42.6 

MI 0.96 0.94 0.96 0.96 0.97 0.82 30.8 59.5 
MI Per- 
Time-Unit 0.96 0.96 0.96 0.96 0.96 0.83 36.8 43.2 

 
Turning to the comparison between the standard item-selection methods and their per-time-

unit versions, results of the constrained condition were similar to those of the unconstrained con-
dition. Using PWKL per-time-unit, rather than PWKL, resulted in a 14% increase in the mean 
number of items administered (from 32.1 to 36.5 items), but a 31% decrease in the mean amount 
of time required to complete the test (from 62.0 to 42.6 time units). Using MI per-time-unit, in-
stead of only MI, resulted in a 19% increase in the mean number of items administered (from 
30.8 to 36.8 items), but a 27% decrease in the mean amount of time required to complete the test 
(from 59.5 to 43.2 time units). 

Finally, a comparison of the PWKL-based and MI-based item-selection methods to each oth-
er again showed slight differences. Use of MI in place of PWKL produced 4% decreases in both 
the mean number of items administered (from 32.1 to 30.8 items) and the mean time required 
(from 62.0 to 59.5 time units). Use of MI per-time-unit produced 1% increases in both the mean 
number of items administered (from 36.5 to 36.8 items) and the mean time required (from 42.6 
to 43.2 time units), compared to PWKL per-time-unit. 

Discussion 
The objective of this research was to extend the information-per-time-unit item-selection ap-

proach of Fan et al. (2012) to the CDM setting. Results suggested that this approach has potential 
to substantially improve the time-efficiency of a diagnostic assessment conducted via CAT. In 
particular, the per-time-unit versions of PWKL and MI lessened the average testing time by at 
least 30% in the unconstrained condition and at least 27% in the constrained condition. These 
reductions are similar to those found in Table 1 of Fan et al. for the unidimensional IRT case. 
Ultimately, the decision of whether to use PWKL per-time-unit or MI per-time-unit, rather than 
PWKL or MI, depends in large part on the goal of the practitioner. If the goal is to minimize the 
average number of items administered, then the standard methods (PWKL and MI) might be pre-
ferred. However, if the goal is to minimize the average testing time, the per-time-unit versions 
might be favored. The latter methods are expected to be useful in certain testing applications, and 
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therefore constitute an important addition to the existing set of CAT item-selection procedures. 
Moreover, although the per-time-unit methods require response-time information about each 
item in the bank, such information is becoming more available as computerized testing becomes 
more common (van der Linden, 2006). 

The simulation design presented here also allowed for a comparison of PWKL-based and 
MI-based item-selection procedures. PWKL and MI tended to produce similar results to each 
other in both their traditional forms and their per-time-unit versions. PWKL resulted in slightly 
greater respondent burden than MI, and PWKL per-time-unit resulted in slightly lower respond-
ent burden than MI per-time-unit. The question of whether these findings represent a systematic 
trend or an artifact of the data should be investigated in future research. 

One important limitation of the study is that it relied exclusively on simulated data. Design-
ing realistic simulation studies that combine CAT, CDMs, and response-time data is not without 
its challenges. This study employed the reduced RUM as the model for CDMs and van der Lin-
den’s (2006) model for response times. These two models were applied independently in the cre-
ation of simulated data. In practice, an association could exist between an examinee’s answer 
(correct or incorrect) and his/her response time. Because the results observed in this study were 
intuitive (PWKL per-time-unit and MI-per-time unit tended to present more items, but take less 
time, than their traditional counterparts), it might be expected that these results could also be 
found in different settings. Nevertheless, additional research should be conducted to better un-
derstand the relation between examinees’ answers and response times when a CDM is used, and 
how this relation affects the relative efficiencies of the different CAT item-selection methods. 
Simulations in which the item parameters of the CDM are correlated with the item parameters of 
the response-time model should be conducted as well.  

Further studies could also be performed in which exposure control methodology is used to 
limit the percentage of times that an item is administered; for example, the procedure of 
Sympson and Hetter (1985) is readily applicable to the methods described here. As discussed by 
Cheng (2009), however, exposure control is generally less critical for CDMs than some other 
psychometric models, because CDMs are often applied in low-stakes settings. Nevertheless, the 
combination of exposure control and CDMs has been considered (e.g., Hsu et al., 2013), and the 
study of exposure control alongside the CDM-based per-time-unit item-selection methods is an 
important topic. An additional area of future research is to examine the types of items that are 
selected by the per-time-unit methods in empirical applications. It is possible that these methods 
will tend to choose items that are qualitatively different from CAT methods that do not take 
time-efficiency into account. For example, the PWKL per-time-unit and MI per-time-unit ap-
proaches might result in the selection of items that require fewer steps to solve, because such 
items would also be expected to require less time. If studies reveal that the per-time-unit methods 
tend to avoid certain desired item types, constraints could be added to ensure that enough items 
of those types are included in each administration. Such constraints, as well as modifications of 
the item-selection procedures to incorporate exposure control, would be expected to reduce the 
efficiency of the CAT. Also, before the new CAT item-selection methods are employed opera-
tionally, the response-time model being used should be validated in the context of cognitive as-
sessment.  

The Fan et al. (2012) study is not the only previous attempt to incorporate response times in 
CAT item selection. Van der Linden (2009b), van der Linden, Scrams, and Schnipke (1999), and 
van der Linden and Xiong (2013) also combined response-time information with CAT. However, 
the work of van der Linden and colleagues focused on control of differential speededness, rather 
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than the selection of items to maximize information per time unit. Although the goal of the cur-
rent paper has been to extend the research of Fan et al. on the latter topic to CDMs, controlling 
differential speededness alongside CDMs is also possible and is a potential topic for future work. 

As mentioned above, the items chosen by the per-time-unit methods do not depend on the 
value of τ used in the computation of expected time, so calculating ˆmτ is unnecessary for the 
item-selection process. This observation raises the question of why response-time modeling is 
needed for per-time-unit item selection—specifically, whether the simple mean of an item’s elic-
ited response times during pretesting could be used in lieu of ˆE( | )i mT τ  in the denominator of 
Equations 11 and 12. In fact, Lau and Wang (2000) discussed the idea of simply dividing item 
information by average response time within the context of computerized classification testing. 
Although the response-time model used in the current research requires an assumption that the 
speed parameter is a constant (including among items measuring different attributes, in the CDM 
context), the response-time model can be used even when examinees receive different items from 
one another during pretesting. This benefit can be weighed against its relative complexity, com-
pared with the approach of simply dividing information by the average response time observed 
during pretesting. A formal comparison of the two approaches could be illuminating.  

It is notable that the estimation of α in the simulation study was based solely on the given 
examinee’s response pattern. As mentioned by van der Linden (2006) and Fan et al. (2012), es-
timation of the trait(s) of interest (here,α ) could potentially be enhanced by incorporating infor-
mation about the examinee’s speed. As in the current study, Fan et al. did not pursue joint esti-
mation of τ and the ability parameter, which for Fan et al. was the unidimensional IRT parame-
ter θ . The authors stated that accounting for speed in the estimation of θ  could be effective, but 
should be done cautiously; this statement also holds for the estimation of α.  

Although the research presented here represents a step toward maximizing information per 
time unit in CDMs, further studies are needed. In addition to addressing the topics mentioned 
above, future work should compare the standard item-selection methods with their per-time-unit 
counterparts under different conditions. Simulations should be conducted using a CDM other 
than the reduced RUM, and the item bank, stopping rule, constraints, and number of attributes 
measured should be varied. The response-time parameters—and potentially the response-time 
model itself—should be varied, as well. Finally, all CAT item-selection methods should be ana-
lyzed under the assumption of an incorrectly specified Bayesian prior distribution in order to as-
sess their robustness. The investigation of each of these topics would constitute an advance to-
ward obtaining time-efficient diagnostic information via CAT. 
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Appendix: 
Kullback-Leibler Information and Mutual Information 

 
In general, the Kullback-Leibler information ( , )K f g is the expected log likelihood ratio of 

two probability distributions ( )f x and ( ),g x  where the expectation is taken with respect to ( )f x :  
 

( )( , ) log
( )f

f xK f g E
g x

 
=  

 
 

 
(A1) 

   
(Chang & Ying, 1996; Cover & Thomas, 1991). For CDMs, the goal is to discern between dif-
ferent attribute patterns, and the random variable in question is the response to a given item. If 
the item is dichotomous, as is assumed by the reduced RUM, the Kullback-Leibler information 
of item i for attribute patterns α'  and α''  is equal to  

[ ]( ) 1 ( )( , ) = ( )log 1 ( ) log
( ) 1 ( )

i i
i i i

i i

P PK P P
P P
   −

+ −   −   

α' α'α' α'' α' α'
α'' α''

 
 
(A2) 

   
(Henson & Douglas, 2005). 

The general definition of MI, for any two random variables Y and Z, involves the marginal 
distributions of these variables, as well as their joint distribution. Let ( )h y and ( )h z  represent the 
marginal distributions of Y and Z, respectively, and let ( , )h y z  represent their joint distribution. 
Here, y and z denote realized values of Y and Z, respectively. The mutual information ( ; )I Y Z  
between these variables is the Kullback-Leibler information between the joint distribution and 
the product of the marginal distributions. Applying Equation A1, this can be written as   

( , )( ; ) ( , ) log
( ) ( )y z

h y zI Y Z h y z
h y h z

=∑∑  
(A3) 

    
(Cover & Thomas, 1991; Wang, 2013; Wang & Chang, 2011; Weissman, 2007). 

MI can be understood intuitively by noting that if Y and Z are independent, then the joint dis-
tribution is equal to the product of marginal distributions: ( , ) ( ) ( )h y z h y h z= for all y and z. In 

this case ( , )log 0
( ) ( )
h y z

h y h z
=  and hence ( ; ) 0,I Y Z =  which is consistent with the intuitive notion 

that independent variables provide no information about each other. However, if Y and Z are not 
independent, it can be shown that ( ; ) 0,I Y Z >  with larger values of ( ; )I Y Z  indicating greater 
information (Cover & Thomas, 1991). 

The calculation in Equation 6 requires a number of different quantities. The marginal distri-
bution of α after m items have been administered is directly provided by the set of posterior 
probabilities{ ( )};mp α these values represent the most current information regarding the unknown 
parameter .α  The marginal distribution of an examinee’s response to item i also involves the 
posterior probabilities{ ( )},mp α as they affect the overall probability of a correct answer to the 
item. Specifically, after m items, the marginal probability of a correct answer to item i is ob-
tained by computing the probability of a correct answer given ,α  then taking a summation 
weighted by the posterior distribution of .α  The marginal probability of a correct answer to item 
i is thus  
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( 1) ( ) ( ),m i m iP U p P= =∑

α
α α  

 
(A4) 

   
where for the reduced RUM, ( )iP α is given by Equation 3. The marginal probability of an incor-
rect answer to item i after m items is ( 0) 1 ( 1).m i m iP U P U= = − =  Finally, the joint probability of 
an attribute patternα and a particular response iu is equal to the marginal (posterior) probability 
of α times the conditional probability of iu  given .α  Hence, after m items, the joint probability 
of α and a correct response to item i is equal to ( , 1) ( ) ( );m i m iP U p P= =α α α  the joint probability 
of α and an incorrect response to item i is equal to [ ]( , 0) ( ) 1 ( ) .m i m iP U p P= = −α α α  These quan-
tities are combined to provide the formula for ( ; )m iI Uα  given in Equation 6. 
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