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The appropriateness of computerized classification testing (CCT) and computerized adaptive test-
ing (CAT) as methods for efficient administration of self-report questionnaires in clinical psy-
chology are compared, when classification is an important test goal. Simulated data sets were 
used to compare the two methods and to study the effect of latent trait distributions and number 
of items administered on the quality of clinical measurements and decisions. CAT and CCT out-
comes were very similar. The implications of these findings for assessment in clinical psychology 
are discussed. 

 
Keywords: computerized classification testing, computerized adaptive testing, item response the-
ory, clinical psychology, disease prevalence 

 
In clinical psychology, self-report questionnaires for measuring attributes associated with 

common mental disorders such as anxiety and depression are often used, both in research set-
tings and clinical practice. Examples of these are the Center for Epidemiologic Studies Depres-
sion Scale (Radloff, 1977), Beck’s Depression Inventory (Beck, Steer, & Carbin, 1988), the 
Hamilton Anxiety Scale (Hamilton, 1959), and the Mood and Anxiety Symptom Questionnaire 
(Watson & Clark, 1991). In addition, because the new version of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM), to be published in 2013, will incorporate dimensional 
measures into the existing classification system (Helzer et al., 2008), self-report questionnaires 
will become even more important in the future. 

In the last decade, computerized adaptive testing (CAT) has become a popular method for ef-
ficient administration of the items of clinical scales. For example, the Patient Reported Outcomes 
Measurement Information System (PROMIS; Cella et al., 2007) is currently developing CATs 
for the measurement of emotional distress (Pilkonis et al., 2011) that allow for monitoring the 
mental health of medical patients. In addition, both German (Fliege et al., 2005, 2009; Walter et 
al., 2007) and Dutch (Roorda, 2011) CATs have been or are being developed for measuring de-
pression and anxiety in similar populations. Finally, in Routine Outcome Monitoring (ROM; 
Carlier et al., 2010), a method devised to collect data on the effectiveness of treatments in mental 
health institutions, the efficiency of CATs has been studied as well (Smits, Zitman, Cuijpers, den 
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Hollander–Gijsman, & Carlier, 2012). The adaptive testing algorithms used in these CATs are 
based on item response theory (IRT) and are driven by increasing the precision of the resulting 
measurements. 

Although interested in measurement, many clinical psychologists attach more value to diag-
nostic accuracy. Especially in clinical practice, self-report questionnaires are used to select ex-
aminees with a high probability of pathology. As in most selection situations, prominence is giv-
en to the utility of a measure with reference to predicting an external criterion (Weitzman, 1982), 
commonly a diagnosis by a clinician. Such a judgment entails the assignment of an examinee to 
one of two categories, “healthy” or “diseased,” and the self-report measure is thus used for clas-
sification decisions (Cronbach & Gleser, 1965). Therefore, adaptive algorithms for classification 
might seem more appropriate than standard CATs. 

Such adaptive procedures for classification have been developed in educational settings with 
the purpose of separating “masters” from “non-masters” (e.g., Parshall, Spray, Kalohn, & Davey, 
2002). These algorithms are similar to standard CAT, but instead of optimizing measurement 
precision, they optimize the classification accuracy in the neighborhood of a cut score relevant 
for decision making. In a setting with clinical scales, such computerized classification testing 
(CCT) has been called “clinical decision adaptive testing” (Waller & Reise, 1989). Although it 
has been suggested that CCT be used instead of CAT in clinical psychology (Embretson & 
Reise, 2000; Smits, Cuijpers, & van Straten, 2011), apart from an illustration by Waller and 
Reise (1989), CCT has never been used in the clinical field. A thorough study of the usefulness 
of CCT, in contrast to CAT, in clinical psychology is therefore needed. 

Of considerable importance in this context is the appropriateness of existing item banks for 
different populations of examinees. In ability or achievement testing, it is known that item banks 
designed for the average ability can provide much less information in subpopulations with more 
extreme abilities (see Gorin, Dodd, Fitzpatrick, & Shieh, 2005). Because item banks designed for 
use in clinical psychology are used both in the general population (such as in PROMIS) and clin-
ical populations (such as in ROM), they might provide very different amounts of information. 
Consequently, the magnitude of the potential advantage of CCT over CAT, if any, might be very 
dissimilar in these different populations. In a study of the usefulness of CCT in clinical psychol-
ogy, the effect of score distributions should, therefore, be included. 

This study had two purposes. The first was to investigate whether it is more appropriate to 
use CAT instead of CCT when clinical decision making is an important test goal. The second 
was to determine if the magnitude of a potential difference between CCT and CAT is moderated 
by the distribution of clinical scores. In a simulation study, both CAT and CCT procedures were 
employed on artificially generated clinical data; clinical score distributions were systematically 
manipulated, and effects on the quality of clinical measurements and decisions were studied.  

Method 
Overview of Procedures 

This simulation study was intended to mimic the development and use of adaptive tests typi-
cally encountered in clinical psychology and related disciplines (e.g., Fliege et al., 2005; Walter 
et al., 2007). First, the scores on a bank of items of a large sample from a relevant population 
were obtained to estimate the item parameters. Next, adaptive algorithms were developed using 
these estimates. Finally, the constructed procedures were employed in a simulated adaptive ad-
ministration of the item bank in a new sample from the same population. The choices made with 
reference to characteristics such as the size of the item bank, and the estimation method of the 
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person parameter were also similar to those encountered in the field. For the comparison of CAT 
and CCT, two variables were manipulated in the simulation: (1) the distribution of the latent trait 
in the population, and (2) the number of administered items. 

Construction of Item Banks 
The estimated IRT models of several CATs developed for assessing anxiety and depression 

were studied (e.g., Fliege et al., 2005; Forkmann et al., 2009; Gardner et al., 2004; Smits et al., 
2011). As a starting point of item bank construction, the data (N = 766) of a 29-item anxiety bank 
of the PROMIS project (Pilkonis et al., 2011) were used. This is an accompanying data file in the 
LORDIF library (Choi, 2011; Choi, Gibbons, & Crane, 2011) of the R package, and a typical 
example of what was available in the reviewed literature. Since this bank has 5-point Likert scale 
items, a polytomous IRT model had to be chosen. The CATs developed in clinical settings either 
use the partial credit model (Muraki, 1992) or the graded response model (GRM; Samejima, 
1969). The GRM was chosen because of its ease of understanding (see, e.g., Mellenbergh, 1995). 
The GRM parameter estimates were used to construct a population distribution from which item 
parameters were drawn for the simulation. To that end, the vector of means and matrix of 
covariances of the five parameter estimates were calculated over the 29 items. Inspection of   
these estimates suggested a truncated normal distribution for each of the five types of parame-
ters. The estimates were idealized (see Table 1) and used as the input for a truncated multivariate 
normal distribution, which, in addition to a mean vector and a covariance matrix, requires a min-
imum and maximum value for each parameter. Item sets resulting from this distribution had item 
information and test information functions that were similar to those of Pilkonis et al. (2011) and 
therefore to those typically found in the field (also see, e.g., Smits et al., 2011). Figure 1 shows 
the item information functions of a randomly chosen data set from the simulation. The CATs en-
countered in the literature had different item bank sizes: Smits et al. (2011) used the smallest 
bank, which consisted of 20 items, whereas Fliege et al. (2005, 2009) used the largest bank, 
which consisted of 64 items. In the present simulation, an item bank was used that had a size ap-
proximately in between these two extremes. For each data set, 40 items were drawn from the 
population item parameter distribution as input for the generation of item scores.  

 
Table 1. Characteristics of the Truncated Multivariate 
Normal Population Distribution of GRM Parameters 

 Statistic Parameter Covariance Matrix 
Parameter Min. Mean Max. a b1 b2 b3 b4 

a   1 2 3   0.40     
b1 −1 0 1   0.10 0.25    
b2   0 1 2   0.05 0.20 0.25   
b3   1 2 3 −0.05 0.17 0.20 0.25  
b4   2 3 4 −0.10 0.14 0.17 0.20 0.25 

 

Simulated Data Generation 
 The data generation procedure began by selecting latent trait (θ) values for the simulees. 

These values were drawn from normal distributions, which had different mean values in three 
populations (0.00, 0.76, and 1.28, respectively; the standard deviation was 1 in all cases). In all 
three populations, the same single critical θ cut score of 1.28 applied, above which simulees were  
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Figure 1. Item Information Functions of a Randomly  
Chosen Data Set in the 10% Prevalence Population 

(The thick line is the average item information) 

 
defined to be “at risk,” and at or below which simulees were defined to be “not at risk” (this cor-
responds to the master/no master classification in mastery testing). Because the populations had 
different means, they had a different rate of at-risk as well. The resulting at-risk levels were 10%, 
30%, and 50% (see Figure 2). 

In mastery testing simulations, interest lies in the correspondence between decisions based on 
the test and those based on true θ; the criterion is therefore of an internal nature. By contrast, in 
clinical testing interest lies in the correspondence of test decisions with those based on an exter-
nal criterion (e.g., Mellenbergh & van der Linden, 1979). Therefore, compared to simulation 
studies in mastery testing (e.g., Thompson, 2011), an additional criterion variable was simulated 
as well: a diagnosis on the basis of a clinical interview. Such a diagnosis is commonly seen as 
the “gold standard.” Naturally, in the clinical field, a perfect relationship between test scores and 
this gold standard is never found.  

To model this situation, another random variable was simulated that had identical population 
distributions (mean and standard deviation) as θ, and a fixed correlation, ρ, with θ. This diagno-
sis variable was dichotomized using a cut off of 1.28 (the 90% quantile value of the standard 
normal distribution): if the simulated diagnosis value was higher than this cut off, the simulee 
received a positive diagnosis (D = 1); if not, a negative diagnosis (D = 0). The value for ρ was 
chosen based on the data of Smits et al. (2011, 2012), two studies on CATs for assessing depres-
sion. For each study the biserial correlation was calculated between the latent depression esti- 
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Figure 2. Correct and Incorrect Classification Decisions  
for the Three Prevalences on the Population Level 

 (Dc and θc are the cut scores on the 
diagnosis variable and θ, respectively) 

 
 

mate and a dichotomous clinical diagnosis for depression. In both studies, this correlation was 
about 0.60; therefore this value for ρ was used in the simulation.  

The resulting samples had three different prevalence percentages of diseased simulees: 10%, 
30%, or 50%. The first value can be considered a low prevalence, and corresponds to what is of-
ten found in community populations, such as those for which the PROMIS project has been de-
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veloping CATs for anxiety and depression. The third value, a prevalence of 50%, corresponds to 
what is often found in populations visiting mental health institutions, such as those monitored in 
ROM. The second value was chosen as an intermediate situation between these two extreme val-
ues. Note that in the population, the at-risk rate, i.e., the proportion of simulees having θ esti-
mates above the cut score, and the prevalence were identical, as shown in Figure 2; in what fol-
lows, these two terms will therefore be used interchangeably. In addition, note again that at the 
population level, even when θ is known, classification errors with respect to the diagnosis varia-
ble (so-called “false positives” and “false negatives”) are made. This simulation procedure, with 
the indicated ρ and prevalence levels, gave rise to area under the receiver operator curves with 
reference to predicting the clinical diagnosis using θ of about 0.80, a value that is often encoun-
tered in clinical measurement (see, e.g., Gardner et al., 2004; Smits et al., 2011). It was thus con-
cluded that the simulated data were representative for assessment in clinical psychology.  

For each data file a new set of item parameters and θs were randomly drawn and these were 
used as input for generating item scores on 40 5–category Likert scale items under the GRM. 
Mellenbergh (1995) described the GRM as a cumulative probability model: the K answer catego-
ries are divided into K − 1 cumulative probabilities. The kth cumulative probability is the proba-
bility that category k  + 1 or higher is chosen. The GRM for a simulee with latent trait θ and re-
sponding to a five–category item j is of the form 
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tained by subtracting adjacent values of ( )*
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In addition, the corresponding item information function (see Figure 1) can be written as  
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where ( )jkP θ′ is the first derivative of ( )jkP θ (e.g., Dodd, de Ayala, & Koch, 1995). 

In the simulation, the item parameters and θ value were entered in Equation 1, giving four 
cumulative probabilities for each item. Next, these were entered into Equation 2 to obtain five 
item category probabilities. Finally, a category score was randomly drawn from the resulting 
multinomial distribution. 

For each data file, the scores of 1,500 examinees were simulated. The scores of a randomly 
drawn 1,000 simulees formed the training set, which was used to estimate the parameters; the 
remaining five hundred simulees were used as the test set for the adaptive procedures. One hun-
dred replications of the adaptive testing procedures were conducted in each prevalence popula-
tion to avoid imprecise results in estimation due to sampling error. Consequently, a total of three 
hundred data files were generated. 
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Parameter Estimation 
In the training sets, the GRM threshold and discrimination parameter estimates of the items 

were obtained with the LTM library (Rizopoulos, 2007, 2006) in R (R Development Core Team, 
2010), using marginal maximum likelihood (Bock & Aitkin, 1981). This estimation method as-
sumes that θ  follows a standard normal distribution. The GRM was run for the entire matrix of 
simulated item response data in each training set, i.e., for the 1,000 simulees and 40 items. 

Population and Calibration Scales 
Although the three prevalence populations differed in true θ  means (0.00, 0.76, and 1.28, re-

spectively), as a result of marginal maximum likelihood estimation, the item and person parame-
ters were calibrated on the standard normal distribution scale (i.e., in each sample, the average θ̂
was 0.0, and the standard deviation was 1.0). To translate the original scale into the calibration 
scale, and vice-versa, a linear transformation was needed. For example, to express the original 
cut score of 1.28 in terms of the resulting calibration scales, it was necessary to subtract the orig-
inal latent means from this cut score, which would give cut scores of 1.28, 0.52, and 0, on the 
calibration scale of the 10%, 30%, and 50% at-risk rate populations, respectively. In the analysis, 
at-risk classification of true θ was made using the original 1.28 cut off, whereas the classification 
of estimated θ was made using calibration scale cut offs. For clarity, however, in what follows 
procedures and outcomes are discussed in terms of the true (generating) θ scale. 

Adaptive Testing Simulations 
Adaptive testing algorithms generally have five basic components (Weiss & Kingsbury, 

1984; Wainer, 2000): (1) a calibrated item bank, (2) a procedure for estimating θ, (3) a stopping 
rule, (4) an item selection method, and (5) a starting level of θ for the administration of the first 
item. The first three components were identical for CAT and CCT in this study. The calibrated 
item set (Component 1) resulted from estimating GRM item parameters in the training data set. 

Two θ estimation methods (Component 2) are generally available in IRT: maximum likeli-
hood (ML) and Bayesian (Embretson & Reise, 2000). The ML approach estimates θ as that value 
which has the highest likelihood of bringing forth the responses observed (Thissen, 1991). By 
contrast, Bayesian estimation uses, in addition to this likelihood, an a priori population distribu-
tion of the latent variable, such as the standard normal. Because of this prior distribution, Bayesi-
an estimation can, and ML estimation cannot, provide an estimate for item response patterns 
consisting exclusively of either extreme lower or extreme higher categories. In clinical test appli-
cations, at least a small portion of responders is expected to score very low on the mental health 
measure, and their response patterns will therefore consist only of extreme lower category an-
swers. In such applications, Bayesian procedures seem more appropriate than ML procedures. In 
this study, Bayesian expected a posteriori (EAP; Bock & Mislevy, 1982) was used, which as-
sumed θ to follow a normal distribution, for both CAT and CCT. EAP is a method that has been 
used in many mental health CATs (see, e.g., Fliege et al., 2005, 2009; Walter et al., 2007). 

CCT procedures and CAT procedures are quite different in their stopping criteria (Compo-
nent 3) (Thompson, 2009). However, for an unequivocal comparison of these methods in this 
study, a uniform stopping criterion was needed. Therefore, the number of items administered was 
used as the stopping criterion. Both procedures were run for seven items. This number was based 
on the typical outcome that, on average, “about four to seven” administered items is deemed 
enough for mental health CATs (see, e.g., Fliege et al., 2005; Gardner et al., 2004; Smits et al., 
2011; Walter et al., 2007). The measurement and classification outcomes were recorded after the 
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administration of each item, resulting in seven levels of the stopping rule. 
The CAT algorithm selected items (Component 4) using maximum information under the es-

timated GRM for the current estimate of θ (Embretson & Reise, 2000; Wainer, 2000); the start-
ing level (Component 5) was set to the average value of θ  in the training data set, as is common-
ly done in mental health CATs (e.g., Fliege et al., 2005; Walter et al., 2007). As mentioned 
above, the average θ̂  in each training data set was zero. As a consequence, the item with the 
highest information at this initial value was chosen as the first item for all simulees in the test set. 
Note that in terms of the true (generating) θ scale, because the θ means differed between preva-
lence conditions, the CATs started at different locations (about 0.00, 0.76, and 1.28, respectively, 
for the 10, 30, and 50% prevalences). 

The CCT algorithm selected items by using maximum information at the cut score of θ 
(Component 4, Thompson, 2009); the cut score was the starting level (Component 5) of the pro-
cedure, as well. Consequently, all simulees had the same sequence of administered items. In the 
training sets, the cut score was determined as follows. Because in the population the at-risk rate 
and prevalence were identical, the diagnosis variable could be used to determine the cut score 
(also see Waller & Reise, 1989, p. 1056). In each sample, the disease prevalence was estimated 
using the diagnosis variable, and one minus this proportion was used as input for the quantile 
function of the standard normal distribution to obtain the cut score. As a result, in terms of the 
original scale, all CCTs had cut scores of about 1.28 (due to sampling errors in the prevalence 
estimate, actual values fluctuated somewhat around 1.28). 

In both algorithms, after each item, an update of θ̂  was obtained, and this estimate was 
used for an interim classification, flagging a simulee as “at risk” only when the estimate exceed-
ed the cut score, and as “not at risk” when the estimate was equal to or lower than the cut score. 
It should be noted that this classification rule did not take into account the uncertainty associat-
ed with that estimate (i.e., its standard error). 

A program, which comprised an alteration of, and additions to the code of the LTM library, 
was written in R to simulate the two adaptive procedures. First, the estimated item parameters 
and cut score within a specific training data set were stored. Next, the test set was used to exam-
ine the adaptive procedures employing these stored outcomes as input. 

Criterion Variables 
Two types of outcomes were studied. The first type of outcome was associated with the con-

gruence between the true (generating) θ and observed ˆ.θ  This type of outcome is stressed in 
methodological research on CAT and CCT, and is referred to as internal accuracy in the current 
study. The second type of criterion variable is associated with the congruence of the estimated θ 
and the diagnosis variable. This type of outcome, which is related to diagnostic accuracy, is what 
many clinical psychologists—heavily influenced by the medical field—focus on, and is referred 
to here as external accuracy. 

Internal accuracy. The first measure of internal accuracy was the fidelity coefficient (Weiss, 
1982), the correlation between true and estimated θ. The second was the proportion of correct 
decisions, an outcome often studied in CCT (e.g., Eggen, 1999; Waller & Reise, 1989), which is 
the rate of simulees for which true θ and θ̂  gave identical classifications. The third measure was 
the Type I error rate (see, e.g., Thompson, 2011; Weitzman, 1982), which is the rate of simulees 
that received a positive classification (θ̂  > cut score), but should have a negative classification, 
having a true θ below the cut score. The fourth measure was the Type II error rate (Thompson, 
2011; Weitzman, 1982), the rate of simulees who had a negative classification (θ̂  < cut score), 



 
 

Journal of Computerized Adaptive Testing 
N. Smits and M. D. Finkelman – CAT and CCT in Clinical Psychology 

 

27|  JCAT  Vol. 1 No. 2   February 2013  

but should have a positive classification on the basis of true θ. 
External accuracy. The first external accuracy measure was the point-biserial correlation be-

tween θ̂  and the diagnostic variable, referred to as “predictive utility” (McDonald, 1999). The 
other two measures expressed the quality of the θ̂ -based classifications in terms of the two con-
ditional probabilities describing performance with reference to the diagnosis variable (see, e.g., 
Kraemer, 1992; Pepe, 2004). Sensitivity is the probability that a diseased person (D = 1) has a θ̂  
higher than the cut score, i.e., is tested as such. Specificity is the probability that a healthy person 
(D = 0) has a θ̂  lower than the cut score, i.e., has a negative test outcome. 

Data Analysis 
The design of this study had three factors: between factor prevalence (10%, 30%, and 50%), 

within factors adaptive procedure (CAT and CCT), and number of items administered (1 to 7), 
producing a 3 × 2 × 7 mixed design with 100 replications on the between factor, yielding a total 
of 300 simulated data sets. The results of the study are presented in terms of the mean outcome 
statistics over the 100 replications under each of the three experimental conditions. The data 
analyses consisted mainly of studying scatterplots of mean outcomes. 

 
Results 

Internal Accuracy 
Figure 3 presents the average fidelity coefficient as a function of prevalence, number of items 

administered, and adaptive procedure. As is to be expected, the congruency between true and 
estimated θ increased with the number of items administered. The fidelity coefficient increased 
with prevalence (i.e., the average of true θ), which resulted from the information function of the 
item bank peaking on the right-hand side of the scale; these banks provided more information for 
the high than low prevalence population. In addition, the fidelity coefficient was consistently 
higher for CAT than for CCT. This difference became smaller, however, as prevalence (i.e., av-
erage θ) increased. In the high (50%) prevalence condition, it hardly mattered for measurement 
precision if CCT instead of CAT was used. 

Figure 4 shows the mean proportion of correct decisions. This proportion was highest in the low 
prevalence condition (the condition with lower true θs), which is to be expected because predic-
tion is easier when the bulk of examinees is far from the cut off. Similarly, it can be argued that clas-
sification is easier if the distribution of two categories is very dissimilar than if it is about equal 
(e.g., giving every observation a not-at-risk classification gives better results in the former than 
in the latter case). In addition, the proportion of correct decisions increased with the number of 
items administered, and the rate of increase changed with prevalence (at-risk rate). The latter out-
come can be explained from both a ceiling effect and items providing more information in the 
higher prevalence conditions (see fidelity coefficient results). The proportion of correct decisions 
was about equal for CCT and CAT in all conditions with an exception of the first item in the 30% 
prevalence condition, where CCT was higher; this small difference, however, seems of very little 
practical importance. 
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Figure 3. Fidelity Coefficients for Three Prevalence Rates 

 
Figure 4. Proportion of Correct Decisions 

for Three Prevalence Rates 
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The results for the Type I error rate are presented in Figure 5a. Type I errors were more often 

made in high prevalence conditions (i.e., conditions with a higher at-risk rate). This is to be ex-
pected because the bivariate distributions of θ and θ̂  were very similar to those in Figure 2 (sub-
stitute θ for diagnosis on the x-axis, and θ̂  for θ on the y-axis): the proportion of simulees with a 
false at-risk classification relative to the rate of true not-at-risk simulees increased with preva-
lence. The effect of the number of items administered was ambiguous. In the high prevalence 
condition, the Type I error rate strongly decreased with the number of items, whereas in the low 
prevalence condition, this rate increased somewhat. Moreover, in the 30% prevalence condition, 
a decrease in Type I errors leveled off after the fourth item. This pattern of outcomes resulted 
from EAP estimation. The prior distribution in EAP draws the estimate toward the mean of θ; 
with more items administered, this shrinkage decreases. All this has little effect in the high prev-
alence situation because the cut score is about equal to the mean of θ, and although the distance 
of an estimate to this score might change due to an decrease in shrinkage, it tends to stay on the 
same side of the cut score, and therefore does not change its classification. By contrast, in the 
low prevalence situation, because the cut score is located on the right-hand side of the mean of θ, 
a reduction in shrinkage results in estimates crossing the cut score from left to right, leading to 
more Type I errors. More important, however, was the outcome that the rate of Type I errors was 
about equal for CCT and CAT in all conditions. 

Figure 5b displays the mean Type II error rates. The Type II error rate was higher in the low 
prevalence condition (i.e., the condition with the lowest at-risk rate). This was anticipated be-
cause of the bivariate distributions of θ and θ̂  (compare Figure 2, with θ substituted for diagno-
sis, and θ̂ for θ): the proportion of simulees with a false not-at-risk classification relative to the 
ratio of true at-risk simulees decreased with prevalence. In addition, the Type II error rate de-
creased with the number of items administered; the rate of change decreased as prevalence in-
creased. The Type II error rate was somewhat higher for CCT than for CAT after the administra-
tion of the first item; this difference, however, disappeared after the second item, and was absent 
in the 50% prevalence condition. 

External Accuracy 

Figure 6 presents the average of the utility of θ̂  for predicting the diagnostic outcome. These 
point-biserial correlations were lower with decreasing prevalence. In addition, note that all corre-
lations were lower than the ρ of 0.60 (between true θ and the original continuous diagnostic vari-
able) used for data generation. These outcomes are a typical result of dichotomizing: correlations 
lose size, and this loss is larger as splitting departs from the mean (e.g., Cohen, 1983): in the 
lower prevalence conditions, dichotomization was applied further from the mean, and therefore, 
predictive utility was lower. As the number of items administered increased, predictive utility 
increased, as well. CAT and CCT gave very similar outcomes, except for the lowest prevalence 
condition in which CAT had consistently lower values than CCT. An inspection of θ̂  distribu-
tions showed that, although mean differences between the two diagnostic groups were larger for 
CAT, this resulted from CCT having a somewhat smaller standard deviation than CAT. Note, 
however, that the differences were only in the third decimal place, and therefore seem of little 
practical importance. 
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Figure 5. Type I and Type II Error Rates 
for Three Prevalence Rates  

a. Type I Errors 

 
 

b. Type II Errors 
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Figure 6. Predictive Utility Outcomes 

for Three Prevalence Rates 
 

 
 
Figure 7a shows the mean sensitivity as a function of prevalence, number of items adminis-

tered, and adaptive procedure. Sensitivity was higher with increasing prevalence, which is to be 
expected based on Figure 2: the rate of true positives relative to the sum of true positives and 
false negatives increases with prevalence. In addition, sensitivity increased with the number of 
items administered; the rate of change decreased as prevalence increased. Sensitivity was slightly 
higher for CCT than for CAT after the administration of the first item; this difference, however, 
disappeared after the second item, and was absent in the 50% prevalence condition. 

Figure 7b displays specificity outcomes. Specificity was lower in high prevalence populations, 
which was anticipated. Figure 2 shows that the rate of true negatives relative to one minus preva-
lence (true negatives plus false positives) decreases with prevalence. The effect of the number of 
items administered was ambiguous. In the high prevalence condition, specificity showed a mild 
monotone increase with the number of items, whereas in the two lower prevalence conditions, it 
decreased somewhat. This pattern of outcomes is similar to those of the Type I error rate results, 
and once more EAP estimation explains these outcomes. The decrease in shrinkage with more 
items administered had little effect in the high prevalence situation, but in the lower prevalence situa-
tions, some estimates crossed the cut score thus producing more false positives. The most im-
portant outcome, however, was that specificity was about equal for CCT and CAT in all three 
conditions. 
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Figure 7. Sensitivity and Specificity for Three Prevalence Rates  

a. Sensitivity 

 
 

b. Specificity 
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Discussion and Conclusions 
 
Measurement precision, as expressed in the fidelity coefficients, was generally higher for 

CAT than for CCT. These differences nearly disappeared, however, in the 50% prevalence popu-
lation. In addition, the utility of θ estimates for predicting the diagnostic outcome was very simi-
lar for CAT and CCT; an exception was the low prevalence condition, in which correlations were 
marginally higher for CCT than for CAT. Both the Type I and II error outcomes (internal at-risk 
classification) and the sensitivity and specificity outcomes (for predicting external diagnosis) 
were nearly identical for CCT and CAT. If there were any differences, they were of very little 
practical importance and/or disappeared after the administration of the second item. These out-
comes seem to suggest that if classification is the test goal, it does not matter if CCT instead of 
CAT is used. 

An explanation for the current outcomes can be the information that the items provided for 
the different populations. Although the means differed substantially in the three populations, they 
were located at or above the center of the θ scale. Therefore, even in the 10% and 30% preva-
lence conditions items that were informative for current θ̂  were informative for the cut score, as 
well. Inspection of the item information functions in Figure 1 illustrates this. For example, items 
that were informative for a θ of 0.0 (the average in the 10% prevalence condition) were generally 
informative for the cut score (1.28), as well. In their review of IRT and clinical measurement, 
Reise and Waller (2009) interpreted such information functions as reflecting the quasi-trait status 
of psychopathology constructs. In addition, they stated that “the existence of quasi-traits ... is 
consequential for many IRT applications” (p. 31). The present study shows another possible con-
sequence of quasi-traits: the potential advantage of CCT over CAT for classification might not 
be so sizable in clinical psychology. 

Given these outcomes, what is the utility of CCT in clinical assessment? For classification, 
both CCT and CAT can be applied because they had similar outcomes. An advantage of CCT 
over CAT is that item selection is not adaptive, which is more economical in terms of the com-
plexity of the algorithm. Hence, if classification is the only goal of the assessment, and CCT ex-
hibits similar performance to CAT, the former might be preferred in some applications. An addi-
tional benefit of CCT is that it is not restricted to employing IRT models, whereas CAT is. Be-
cause the purpose of CCT is classification, instead of a measurement model, a prediction model 
can be used. Therefore, because not all variables used in clinical assessment reflect the presence 
of a latent construct, only CCT is an option for computerized assessment of these variables. Re-
cently, such non-IRT based CCT algorithms were applied to a health questionnaire (Finkelman, 
He, Kim, & Lai, 2011), and a depression inventory (Finkelman, Smits, Kim, & Riley, 2012). 

Results from the simulation suggest that using EAP for estimating θ affects classification ac-
curacy. Because of the shrinkage resulting from EAP, in populations with lower prevalence, 
Type I error rates and specificity decreased as more items were administered, which is, of course, 
an awkward outcome. Therefore, further investigation is needed to determine if it is more appro-
priate to use other estimation methods in clinical assessment. 

Limitations 
Although this study provided useful information on the relative utility of using CCT instead 

of CAT for classification, there are some limitations that have implications for future research. 
First, CCT and CAT used an identical stopping rule, i.e., number of items administered. This was 
necessary to prevent potential differences in outcomes to be ascribed to differences in number of 
items administered. As a result, it is difficult to relate the current outcomes to comparisons of 
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CAT and CCT in mastery testing (e.g., Eggen, 1999; Thompson, 2009, 2011). In those studies, 
the two methods generally showed similar classification results as well, but CCT needed fewer 
items. Therefore, future research should examine this potential advantage of CCT over CAT in 
clinical testing. Second, as alluded to earlier, due to its classification bias, EAP should be com-
pared with other estimation methods, such as ML (combined with the stepsize method; Dodd, 
Koch, & De Ayala, 1989), and weighted ML (Wang & Wang, 2001) to see if these are more ap-
propriate. Third, the current study used only a single item selection method in CCT (maximum 
information at the cut score), although other measures, such as Kullback-Leibler information 
(Eggen, 1999), are available. Further research including multiple item selection methods would 
show whether the current outcomes can be generalized to other methods. Fourth, this study used 
a single cut score, the value of 1.28 on the standard normal scale, and other cut scores, further or 
closer to the population mean could also be used; it would be instructive to see if other cut offs 
give similar results. Fifth, the focus was on one specific diagnostic decision, a healthy versus 
diseased classification, whereas other clinical classifications (e.g., three categories: low, moder-
ate, and high risk; e.g., Eggen, 1999) used in the field as well should also be studied. Finally, in 
the current study the training (calibration) set and test (application) set were drawn from the 
same population distribution. This might be at odds with clinical practice; for example, mental 
health institutions might choose to employ an item bank developed for the general population 
(e.g., by PROMIS) for the assessment of their clinical populations (e.g., in ROM). It would be 
instructive to examine the effect of disease prevalence differences in the calibration and testing 
samples. 
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