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Abstract

The current paper compares the appropriateness of Computerized Classification Testing

(CCT) and Computerized Adaptive Testing (CAT) as methods for efficient administration

of self-report questionnaires in clinical psychology, when classification is an important test

goal. Simulated data sets were used to compare the two methods and study the effect of

latent trait distributions and number of items administered on the quality of clinical

measurements and decisions. CAT and CCT outcomes were very similar. The

implications of these findings for assessment in clinical psychology are discussed.

Index terms: Computerized Classification Testing, Computerized Adaptive Testing, Item

Response Theory, Clinical Psychology, Disease Prevalence
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A comparison of computerized classification testing and

computerized adaptive testing in clinical psychology

Introduction

In clinical psychology, self-report questionnaires for measuring attributes associated

with common mental disorders such as anxiety and depression are often used, both in

research settings and clinical practice. Illustrious examples of these are the Center for

Epidemiologic Studies–Depression Scale (Radloff, 1977), Beck’s Depression Inventory

(Beck & Aaron, 1988), the Hamilton Anxiety Scale (Hamilton, 1959), and the Mood and

Anxiety Symptom Questionnaire (Watson & Clark, 1991). In addition, because the new

version of DSM, to be published in 2013, will incorporate dimensional measures into the

existing classification system (Helzer et al., 2008), self-report questionnaires will become

even more important in the future.

In the last decade Computerized Adaptive Testing (CAT) has become a popular

method for an efficient administration of the items of clinical scales. For example, the

Patient Reported Outcomes Measurement Information System (PROMIS, Cella et al.,

2007) is currently developing CATs for the measurement of emotional distress (Pilkonis et

al., 2011) which allow for monitoring the mental health of medical patients. In addition,

both German (Fliege et al., 2005, 2009; Walter et al., 2007) and Dutch (Roorda, 2011)

CATs have been or are being developed for measuring depression and anxiety in similar

populations. Finally, in Routine Outcome Monitoring (ROM, Carlier et al., 2010), a

method devised to collect data on the effectiveness of treatments in mental health

institutions, the efficiency of CATs has been studied as well (Smits, Zitman, Cuijpers, den

Hollander–Gijsman, & Carlier, 2012). The adaptive testing algorithms used in these

examples are based on Item Response Theory (IRT) and are driven by increasing the
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precision of measurements.

Although interested in measurement, many clinical psychologists attach more value

to diagnostic accuracy. Especially in clinical practice, self-report questionnaires are used

to select subjects with a high probability of pathology. Like in most selection situations,

prominence is given to the utility of a measure with reference to predicting an external

criterion (Weitzman, 1982), commonly a diagnosis by a clinician. Such a judgment entails

the assignment of a subject to one of two categories, ‘healthy’ and ‘diseased’, and the

self-report measure is thus used for classification decisions (Cronbach & Gleser, 1965).

Therefore, adaptive algorithms for classification may seem more appropriate than

standard CATs.

Such adaptive procedures for classification have been developed in educational

settings with the purpose of separating masters from non-masters (e.g., Parshall, Spray,

Kalohn, & Davey, 2002). These algorithms are similar to standard CAT, but instead of

optimizing measurement precision, they optimize the accuracy in the neighborhood of a

cut score relevant for decision making. In a setting with clinical scales, such Computerized

Classification Testing (CCT) may be called clinical decision CAT (Waller & Reise, 1989,

p. 31). Although it has been suggested to use CCT instead of CAT in clinical psychology

(Embretson & Reise, 2000; Smits, Cuijpers, & van Straten, 2011), apart from an

illustration by Waller and Reise (1989), CCT has never been used in the clinical field. A

thorough study of the usefulness of CCT, in contrast to CAT, in clinical psychology is

therefore needed.

Of considerable importance in this context is the appropriateness of existing item

banks for different populations of subjects. In proficiency testing it is known that item

pools designed for the average ability may provide much less information in

subpopulations with more extreme abilities (see Gorin, Dodd, Fitzpatrick, & Shieh, 2005).

Because item pools designed in clinical psychology are used both in the general population
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(such as in PROMIS) and clinical populations (such as in ROM), they may provide very

different amounts of information. Consequently, the magnitude of the potential advantage

of CCT over CAT, if any, may be very dissimilar in these different populations. In a study

of the usefulness of CCT in clinical psychology the effect of score distributions should,

therefore, be included.

This study has two purposes. The first is to investigate whether it is more

appropriate to use CAT instead of CCT when clinical decision making is an important

test goal. The second is to determine if the magnitude of a potential difference between

CCT and CAT is moderated by the distribution of clinical scores. In a simulation study

both CAT and CCT procedures are employed on artificially generated clinical data;

clinical score distributions are systematically manipulated, and effects on the quality of

clinical measurements and decisions are studied.

Method

Overview of Procedures

In this simulation study we intended to mimic the development and use of adaptive

tests typically encountered in clinical psychology and related disciplines (e.g., Fliege et al.,

2005; Walter et al., 2007). First, the scores on a pool of items of a large sample from a

relevant population were obtained to estimate the item parameters. Next, adaptive

algorithms were developed using these estimates. Finally, the constructed procedures were

employed in a simulated adaptive administration of the item pool in a new sample from

the same population. The choices made with reference to characteristics such as the size

of the item bank, and the estimation method of the person parameter were also similar to

those encountered in the field.

For the comparison of CAT and CCT, two variables were manipulated in the

simulation: (i) the distribution of the latent trait in the population, and (ii) the number of
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administered items.

Construction of Item Pools

For the simulation we intended to mimic the item sets commonly encountered in

CAT assessment in clinical settings. To that end, we studied the estimated IRT models of

several papers on CATs developed for assessing anxiety and depression (e.g., Fliege et al.,

2005; Forkmann et al., 2009; Gardner et al., 2004; Smits et al., 2011). Finally, as a

starting point of item pool construction, we used the data (N = 766) of a 29-item anxiety

bank of the PROMIS project (Pilkonis et al., 2011), which is an accompanying data file in

the lordif library (Choi, 2011; Choi, Gibbons, & Crane, 2011) of the R package, and a

typical example of what we encountered. Since this bank has 5–point Likert scale items, a

polytomous IRT model had to be chosen. The CATs developed in clinical settings either

use the Partial Credit Model (PCM, Muraki, 1992) or the Graded Response Model (GRM,

Samejima, 1969). We chose the GRM because of its ease of understanding (see, e.g.,

Mellenbergh, 1995). The resulting item information plots are provided in Figure 1. The

GRM parameter estimates were used to construct a population distribution to draw item

parameters from in the present simulation. To that end, we calculated the vector of means

and matrix of covariances of the 5 parameter estimates over the 29 items. Inspection of

these estimates suggested a truncated normal distribution for each of the five types of

parameters. We idealized the estimates (see Table 1) and used them as the input for a

truncated multivariate normal distribution, which, in addition to a mean vector and a

covariance matrix, requires a minimum and maximum value for each parameter. Item sets

resulting from this distribution have item- and test information functions which are

similar to those of Pilkonis et al. (2011) and therefore to those typically found in the field

(also see, e.g., Smits et al., 2011). The CATs encountered have different item bank sizes:

Smits et al. (2011) used the smallest bank, which consists of 20 items, whereas Fliege et
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al. (2005, 2009) used the largest bank, which consists of 64 items. In the present

simulation it was chosen to use an item bank with a size approximately in between these

two extremes. For each data set, 40 items were drawn from the population item parameter

distribution as input for the generation of item scores.

Simulated Data Generation

The data generation procedure started by selecting latent trait (θ) values for the

simulees. These values were drawn from normal distributions, which had different mean

values in three populations (0.00, 0.76, and 1.28, respectively; standard deviation was 1 in

all cases). In all three populations the same single critical θ cut score of 1.28 applied,

above which simulees were defined to be ‘at risk’, and below which simulees were defined

to be ‘not at risk’ (this corresponds to the master/no master classification in mastery

testing). Because the populations had different means, they had a different rate of ‘at risk’

subjects as well. The resulting at risk levels were: 10%, 30%, and 50% (see Figure 2).

In mastery testing, interest lies in the correspondence between decisions based on

the test on the one hand and those based on true θ on the other; the criterion is therefore

of an internal nature. By contrast, in clinical testing interest lies in the correspondence of

test decisions with those based on an external criterion (e.g., Mellenbergh & van der

Linden, 1979). Therefore, compared to simulation studies in mastery testing (e.g.,

Thompson, 2011), an additional criterion variable was simulated as well: a diagnosis on

the basis of a clinical interview. Such a diagnosis is commonly seen as the ‘gold standard’.

Naturally, in the clinical field, a perfect relationship between test scores and this gold

standard is never found. To mimic this situation we did the following. We simulated

another random variable which had identical population distributions as θ (in terms of the

mean and standard deviation), and a fixed correlation, ρ, with θ. This diagnosis variable

was dichotomized using a cut off of 1.28 (the 90% quantile value of the standard normal
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distribution): if the simulated diagnosis value was higher than this cut off, the simulee got

a positive diagnosis (D = 1), if not, a negative diagnosis (D = 0). The value for ρ was

chosen as follows. We used the data of Smits et al. (2011), and Smits et al. (2012), two

studies on CATs for assessing depression, and for each study we calculated the biserial

correlation between the latent depression estimate and a dichotomous clinical diagnosis for

depression. In both studies, this correlation was about 0.60; therefore we chose this as the

value for ρ in our simulation. The resulting samples had three different prevalence

percentages of diseased simulees: 10%, 30%, or 50%. The first value can be considered a

low prevalence, and corresponds to what is often found in community populations, such as

those for which the PROMIS project has been developing CATs for anxiety and

depression. The third value, a prevalence of 50%, corresponds to what is often found in

populations visiting mental health institutions, such as those monitored in ROM. The

second value was chosen for providing an intermediate situation between these two

extreme vales. Note that in the population, the at risk rate and the prevalence were

identical, as shown in Figure 3; in what follows, these two terms will therefore be used

interchangeably. This simulation procedure, with mentioned ρ and prevalence levels, gave

rise to area under the receiver operator curves with reference to predicting the clinical

diagnosis using θ of about 0.80, a value which is often encountered in clinical measurement

(see, e.g., Gardner et al., 2004; Smits et al., 2011). It was thus concluded that the

simulated data were representative for assessment in clinical psychology.

For each data file, the θ and diagnosis scores of 1,500 subjects were simulated. The

θ scores were then, in conjunction with the drawn item parameters, used to generate the

item scores on 40 5–point Likert scale items. The scores of a randomly drawn 1,000

simulees formed the training set, which was used to estimate the parameters; the

remaining five hundred simulees were used as test set for the adaptive procedures. One

hundred replications of the adaptive testing procedures were conducted in each prevalence
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population to avoid imprecise results in estimation due to sampling error. Consequently, a

total of three hundred files were generated.

Parameter Estimation

In the training sets, the GRM threshold and discrimination parameter estimates of

the items were obtained with the ltm library (Rizopoulos, 2007, 2006) in R (R

Development Core Team, 2010), using marginal maximum likelihood (Bock & Aitkin,

1981). This estimation method assumes that the latent trait follows a standard normal

distribution. The GRM was run for the entire matrix of simulated item response data in

each training set, i.e., for the 1,000 simulees and 40 items.

Population and Calibration Scales

Although the three prevalence populations differed in true latent variable means

(0.00, 0.76, and 1.28, respectively), as a result of marginal maximum likelihood

estimation, the item and person parameters were calibrated on the standard normal

distribution scale (i.e., in each sample, the average θ̂ was zero, and SD was one). To

translate the original scale into the calibration scale, and vice versa, a linear

transformation is needed. For example, to express the original cut score of 1.28 in terms of

the resulting calibration scales, we need to subtract the original latent means from this cut

score, which would give cut scores of 1.28, 0.52, and 0, on the calibration scale of the 10%,

30%, and 50% at risk rate populations, respectively. In the analysis, at risk classification

of true θ was made using the original 1.28 cut off, whereas the classification of estimated θ

was made using calibration scale cut offs. For clarity, however, in what follows we will

discuss procedures and outcomes in terms of the true (generating) θ scale.
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Adaptive Testing Simulations

Adaptive testing algorithms generally have five basic components (Weiss &

Kingsbury, 1984; Wainer, 2000): (1) a calibrated item pool, (2) a procedure to estimate θ,

(3) a stopping rule, (4) an item selection method, and (5) a starting level of θ for the

administration of the first item. As the first three components are identical for CAT and

CCT in this study, we will discuss these first; the remaining two components are discussed

for each procedure, separately. In this study, the calibrated item set (Component 1)

resulted from estimating GRM item parameters in the training data set.

Two score estimation methods (Component 2) are generally available in IRT:

Maximum Likelihood (ML) and Bayesian (Embretson & Reise, 2000). The ML approach

estimates θ as that value which has the highest likelihood of bringing forth the responses

observed (Thissen, 1991). By contrast, Bayesian estimation uses, in addition to this

likelihood, an a priori population distribution of the latent variable, such as the standard

normal. Because of this prior distribution, Bayesian estimation can and ML estimation

cannot provide an estimate for item response patterns consisting exclusively of either

extreme lower or extreme higher categories. In clinical test applications, at least a small

portion of responders is expected to score very low on the mental health measure, and

their response patterns will therefore consist of extreme lower category answers only. In

such applications, Bayesian procedures seem more appropriate than ML procedures. In

this study the Bayesian method Expected a Posteriori (EAP, Bock & Mislevy, 1982),

which assumed θ to follow a normal distribution, was applied for both CAT and CCT.

EAP is a method which has been used in many mental health CATs (see, e.g., Fliege et

al., 2005, 2009; Walter et al., 2007).

CCT procedures and CAT procedures are quite different in their stopping criteria

(Component 3) (Thompson, 2009). However, for an unequivocal comparison of these

methods in this study, a uniform stopping criterion was needed. We therefore used the
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number of items administered as the stopping criterion. We ran both procedures for seven

items. This number was based on the typical outcome that, on average, ‘about four to

seven’ administered items is deemed enough for mental health CATs (see, e.g., Fliege et

al., 2005; Gardner et al., 2004; Smits et al., 2011; Walter et al., 2007). The measurement

and classification outcomes were recorded after the administration of each item, resulting

in seven levels of the stopping rule.

The CAT algorithm selected items (Component 4) using maximum information

under the estimated GRM for the current estimate of θ (Embretson & Reise, 2000;

Wainer, 2000); the starting level (Component 5) was set to the average value of the latent

trait in the training data set, as is commonly done in mental health CATs (e.g., Fliege et

al., 2005; Walter et al., 2007). As mentioned in the Population and Calibration Scales

section, the average θ̂ in each training data set was zero. As a consequence, the item with

the highest information at this initial latent trait value was chosen as the first item for all

simulees in the test set. Note that in terms of the true (generating) θ scale, because the θ

means differed between prevalence conditions, the CATs started at different locations

(about 0.00, 0.76, and 1.28, respectively, for the 10, 30, and 50% prevalences).

The CCT algorithm selected items by using maximum information at the cut score

of θ (Component 4, Thompson, 2009); the cut score was the starting level (Component 5)

of the procedure as well. Consequently, all simulees had the same sequence of

administered items. In the training sets the cut score was determined as follows. Because

in the population the at risk rate and prevalence were identical, the diagnosis variable

could be used to determine the cut score (also, see Waller & Reise, 1989, p. 1056). In each

sample, the disease prevalence was estimated using the diagnosis variable, and one minus

this proportion was used as input for the quantile function of the standard normal

distribution to obtain the cut score (see, Population and Calibration Scales section). As a

result, in terms of the original scale, all CCTs had cut scores of about 1.28.
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A program, which comprised an alteration of, and additions to the code of the ltm

library, was written in R to simulate the two adaptive procedures. First, the estimated

item parameters and cut score within a specific training data set were stored. Next, the

test set was used to examine the adaptive procedures employing these stored outcomes as

input.

Criterion Variables

Two types of outcomes were studied. The first type of outcome was associated with

the congruence between the true (generating) θ and observed θ̂. This type of outcome is

stressed in methodological research on CAT and CCT, and is referred to as internal

accuracy in the current study. The second type of criterion variable is associated with the

congruence of the estimated θ and the diagnosis variable. This type of outcome, which is

related to diagnostic accuracy, is what many clinical psychologists –heavily influenced by

the medical field– focus on, and is referred to here as external accuracy.

Internal accuracy. The first measure of internal accuracy was the fidelity coefficient

(Weiss, 1982), the correlation between true and estimated θ. The second was the

proportion of correct decisions, an outcome often studied in CCT (e.g., Eggen, 1999;

Waller & Reise, 1989), which is the rate of simulees for which true θ and θ̂ gave identical

classifications. The third measure is the Type I error rate (see, e.g., Thompson, 2011;

Weitzman, 1982), which is the rate of subjects who receive a positive classification (θ̂ >

cut score), but who should have a negative classification, having a true θ below the cut

score. The fourth measure is the Type II error rate (Thompson, 2011; Weitzman, 1982),

the rate of subjects who have a negative classification (θ̂ < cut score), but who should

have a positive one on the basis of true θ.

External accuracy. The first external accuracy measure was the point-biserial

correlation between θ̂ and the diagnostic variable, referred to as ‘predictive utility’
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(McDonald, 1999). The other two measures express the quality of the θ̂-based

classifications in terms of the two conditional probabilities describing performance with

reference to the diagnosis variable (see, e.g., Kraemer, 1992; Pepe, 2004). Sensitivity is

the probability that a diseased subject (D = 1) has a θ̂ higher than the cut score, i.e., is

tested as such. Specificity is the probability that a healthy subject (D = 0) has a θ̂ lower

than the cut score, i.e., has a negative test outcome.

Data Analysis

The design of this study had three factors: between factor prevalence (10%, 30%,

and 50%), within factors adaptive procedure (CAT and CCT), and number of items

administered (1 to 7), producing a 3× 2× 7 mixed design with 100 replications on the

between factor, yielding a total of 300 simulated data sets.

The results of the study are discussed in terms of the mean outcome statistics over

the 100 replications under each of the three experimental conditions. The data analyses

consisted mainly of studying scatter plots of mean outcomes.

Results

Internal accuracy

Figure 4 presents the average fidelity coefficient as a function of prevalence, number

of items administered and adaptive procedure. As is to be expected, the congruency

between true and estimated θ increased with the number of items administered. The

fidelity coefficient increased with prevalence (i.e, the average of true θ), which resulted

from the information function of the item pool peaking on the right hand side of the scale;

these pools provided more information for the high than low prevalence population. In

addition, the fidelity coefficient was consistently higher for CAT than for CCT. This

difference became smaller, however, as prevalence (i.e., average θ) increased. In the high
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(50%) prevalence condition, it hardly mattered for measurement precision if CCT instead

of CAT was used.

Figure 5 shows the mean proportions of correct decisions. This proportion was

highest in the low prevalence condition (the condition with lower true θ’s), which is to be

expected because prediction is easier when the bulk of subjects is far from the cut off.

Similarly, it may be argued that classification is easier if the distribution of two categories

is very dissimilar than if it is about equal (e.g., giving every observation a ‘not at risk’

classification gives better results in the former than in the latter case). In addition, the

proportion of correct decisions increased with the number of items administered, and the

rate of increase changed with prevalence (at risk rate). The latter outcome may be

explained from both a ceiling effect and items providing more information in the higher

prevalence conditions (see fidelity coefficient results). The proportion of correct decisions

was about equal for CCT and CAT in all conditions with an exception of the first item in

the 30% prevalence condition, where CCT was higher; this small difference, however,

seems of very little practical importance.

In Figure 6 the results for the Type I error rate are presented. Type I errors were

more often made in high prevalence conditions (i.e., conditions with a higher at risk rate).

This is to be expected because the bivariate distributions of θ and θ̂ are very similar to

those in Figure 3 (substitute θ for diagnosis on the x -asis, and θ̂ for θ on the y-axis): the

proportion of simulees with a false at risk classification relative to the rate of true not at

risk simulees increases with prevalence. The effect of the number of items administered

was ambiguous. In the high prevalence condition, the Type I error rate strongly decreased

with the number of items, whereas in the low prevalence condition, this rate increased

somewhat. Moreover, in the 30% prevalence condition, a decrease in Type I errors leveled

off after the fourth item. This pattern of outcomes resulted from EAP estimation. The

prior distribution in EAP draws the estimate towards the mean of θ; with more items
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administered, this shrinkage decreases. All this has little effect in the high prevalence

situation because the cut score is about equal to the mean of θ, and although the distance

of an estimate to this score may change due to an decrease in shrinkage, it tends to stay on

the same side of the cut score, and therefore does not change its classification. By contrast,

in the low prevalence situation, because the cut score is located on the right-hand side of

the mean of θ, a reduction in shrinkage results in estimates crossing the cut score from left

to right, leading to more Type I errors. More important, however, was the outcome that

the rate of Type I errors was about equal for CCT and CAT in all conditions.

Figure 7 displays the mean Type II error rates. The Type II error rate was higher in

the low prevalence condition (i.e., condition with the lowest at risk rate). This was

anticipated because of the bivariate distributions of θ and θ̂ (compare Figure 3, with θ

substituted for diagnosis, and θ̂ for θ): the proportion of simulees with a false ‘not at risk’

classification relative to the ratio of true at risk simulees decreases with prevalence. In

addition, the Type II error rate decreased with the number of items administered; the rate

of change decreased as prevalence went up. The Type II error rate was somewhat higher

for CCT than for CAT after the administration of the first item; this difference, however,

disappeared after the second item, and was absent in the 50% prevalence condition.

External accuracy

Figure 8 presents the average of the utility of θ̂ for predicting the diagnostic

outcome. These point-biserial correlations were lower with decreasing prevalence. In

addition, note that all correlations were lower than the ρ of 0.60 (between true θ and the

original continuous diagnostic variable) used for data generation. These outcomes are a

typical result of dichotomizing: correlations lose size, and this loss is larger as splitting

departs from the mean (e.g., Cohen, 1983): in the lower prevalence conditions

dichotomization was applied further from the mean, and therefore, predictive utility was
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lower. As the number of items administered increased, predictive utility increased as well.

CAT and CCT gave very similar outcomes, except for the lowest prevalence condition in

which CAT had consistently lower values than CCT. An inspection of θ̂ distributions

showed that, although mean differences between the two diagnostic groups were larger for

CAT, this resulted from CCT having a somewhat smaller standard deviation than CAT.

Note, however, that the differences were only in the third decimal place, and therefore

seem of little practical importance.

Figure 9 shows the mean sensitivity as a function of prevalence, number of items

administered and adaptive procedure. Sensitivity was higher with increasing prevalence,

which is to be expected when looking at Figure 3: the rate of true positives relative to the

sum of true positives and false negatives increases with prevalence. In addition, sensitivity

increased with the number of items administered; the rate of change decreased as

prevalence went up. Sensitivity was a little higher for CCT than for CAT after the

administration of the first item; this difference, however, disappeared after the second

item, and was absent in the 50% prevalence condition.

In Figure 10 specificity outcomes are presented. Specificity was lower in high

prevalence populations, which was anticipated. Figure 3 shows that the rate of true

negatives relative to one minus prevalence (true negatives plus false positives) decreases

with prevalence. The effect of the number of items administered was ambiguous. In the

high prevalence condition, specificity showed a mild monotone increase with the number of

items, whereas in the two lower prevalence conditions, it decreased somewhat. This

pattern of outcomes is similar to those of the Type I error rate results, and once more

EAP estimation explains these outcomes. The decrease in shrinkage with more items

administered had little effect in the high prevalence situation, but in the lower prevalence

situations, some estimates crossed the cut score thus producing more false positives. The

most important outcome, however, was that specificity was about equal for CCT and CAT
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in all three conditions.

Discussion

In the current study, measurement precision, as expressed in the fidelity coefficients,

was generally higher for CAT than for CCT. These differences nearly disappeared,

however, in the 50% prevalence population. In addition, the utility of θ estimates for

predicting the diagnostic outcome was very similar for CAT and CCT; an exception was

the low prevalence condition, in which correlations were marginally higher for CCT than

for CAT. Both the type I and II error outcomes (internal at risk classification) and the

sensitivity and specificity outcomes (for predicting external diagnosis) were nearly

identical for CCT and CAT. If there were any differences, they were of very little practical

importance and/or disappeared after the administration of the second item. These

outcomes seem to suggest that if classification is the test goal, it does not matter if CCT

instead of CAT is used.

An explanation for the current outcomes may be the information that the items

provided for the different populations. Although the means differed substantially in the

three populations, they were located at or above the center of the θ scale. Therefore, even

in the 10% and 30% prevalence conditions items that were informative for current θ̂ were

informative for the cut score as well. Inspection of the item information functions in

Figure 1 illustrates this. For example, items which are informative for a θ of zero (the

average in the 10% prevalence condition) are generally informative for the cut score (1.28)

as well. In their review of IRT and clinical measurement, Reise and Waller (2009)

interpreted these typical peaked information functions as reflecting the quasi-trait status

of psychopathology constructs. In addition, they stated that “the existence of quasi-traits

(...) is consequential for many IRT applications” (p. 31). The present study shows

another possible consequence of quasi-traits: the potential advantage of CCT over CAT
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for classification may not be so sizable in clinical psychology.

Given these outcomes, what is the utility of CCT in clinical assessment? For

classification, both CCT and CAT may be applied because they had similar outcomes. An

advantage of CCT over CAT is that item selection is not adaptive, which is more

economical in terms of the complexity of the algorithm. Hence, if classification is the only

goal of the assessment, and CCT exhibits similar performance to CAT, the former may be

preferred in some applications. An additional benefit of CCT is that it is not restricted to

employing IRT models, whereas CAT is. Because the purpose of CCT is classification,

instead of a measurement model, a prediction model may be used. Therefore, because not

all variables used in clinical assessment reflect the presence of a latent construct, only

CCT is an option for computerized assessment of these variables. Recently, such non-IRT

based CCT algorithms were applied to a health questionnaire (Finkelman, He, Kim, &

Lai, 2011), and a depression inventory (Finkelman, Smits, Kim, & Riley, in press).

Results from the simulation suggest that using EAP for estimating θ affects

classification accuracy. Because of the shrinkage resulting from EAP, in populations with

lower prevalence, Type I error rates and specificity decreased as more items were

administered, which is, of course, an awkward outcome. Therefore, further investigation is

needed to determine if it is more appropriate to use other estimation methods in clinical

assessment.

Whereas this study gives helpful information on the relative utility of using CCT

instead of CAT for classification, there are some limitations that guide our future research.

First, CCT and CAT used an identical stopping rule, i.e., number of items administered.

This was necessary to prevent potential differences in outcomes to be ascribed to

differences in number of items administered. As a result, it is difficult to relate the current

outcomes to comparisons of CAT and CCT in mastery testing (e.g., Eggen, 1999;

Thompson, 2009, 2011). In those studies the two methods generally showed similar



CAT and CCT in Clinical Assessment 19

classification results as well, but CCT needed less items. Therefore future research should

examine this potential advantage of CCT over CAT in clinical testing. Second, as alluded

to earlier, due to its classification bias, EAP should be compared with other estimation

methods, such as ML (combined with the stepsize method, Dodd, Koch, & De Ayala,

1989), weighted ML (Wang & Wang, 2001) and maximum a posteriori (Embretson &

Reise, 2000) to see if these are more appropriate. Third, the current study used only a

single item selection method in CCT (maximum information at the cut score), although

other measures, such as Kullback-Leibler Information (Eggen, 1999), are available.

Further research including multiple item selection methods would show whether the

current outcomes may be generalized to other methods as well. Fourth, this study used a

single cut score, the value of 1.28 on the standard normal scale, and other cut scores,

further or closer to the population mean could also be used; it would be instructive to see

if other cut offs give similar results. Fifth, we focused on one specific diagnostic decision, a

healthy versus diseased classification, whereas other clinical classifications (e.g., three

categories: low, moderate, and high risk, see, Eggen, 1999) are used in the field, which

should be studied as well. Finally, in the current study the training (calibration) set and

test (application) set were drawn from the same population distribution. This may be at

odds with clinical practice; for example, mental health institutions may choose to employ

an item bank developed for the general population (e.g., by PROMIS) for the assessment

of their clinical populations (e.g., in ROM). It would be instructive to examine the effect

of disease prevalence differences in the calibration and testing samples.
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Table 1: Characteristics of the truncated multivariate normal population distribution of

GRM parameters over the items. Left panel: parameter values; right-hand panel: parameter

covariance matrix.

Min. Mean Max.

a 1 2 3

b1 −1 0 1

b2 0 1 2

b3 1 2 3

b4 2 3 4

a b1 b2 b3 b4

2/5

1/10 1/4

1/20 1/5 1/4

−1/20 1/6 1/5 1/4

−1/10 1/7 1/6 1/5 1/4
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Figure Captions

Figure 1. Item information of the 29-item Anxiety PROMIS bank (Pilkonis et al., 2011).

Figure 2. Distribution of θ in the three populations and the cut score.

Figure 3. Correct and incorrect classification decisions for the three prevalences on the

population level. Note that the diagnosis variable was dichotomized.

Figure 4. Fidelity outcomes.

Figure 5. Proportion of correct decisions outcomes.

Figure 6. Type I error outcomes.

Figure 7. Type II error outcomes.

Figure 8. Predictive utility outcomes.

Figure 9. Sensitivity outcomes.

Figure 10. Specificity outcomes.
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