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Stochastic curtailment (SC) is a statistical procedure that was originally developed to 

enhance the efficiency of clinical trials. It has been applied to psychological testing, but to 

sequential mastery testing only (Finkelman, 2008, 2010). This study adapted the method 

to detect low-precision examinees in computerized adaptive tests (CATs) (i.e., examinees 

whose final standard error of measurement (FSEM) at the end of a full-length CAT could 

not reach the pre-specified SEM termination level). Using central limit approximations, the 

study developed a method to estimate the distribution of test information at maximum test 

length and the corresponding FSEM. The study also developed a hypothesis testing 

procedure to implement SC. Using monte-carlo simulations, the study found that (1) the 

FSEM estimation procedure performed well in the middle range of 𝜃 values but less so at 

extreme 𝜃  values; (2) the SC procedure had good predictive accuracy, with excellent 

performance on positive predictive values and good performance on true positive rates and 

false positive rates; (3) the potential reduction in test length was substantial. Overall, the 

study showed that SC is a promising procedure to identify low-precision examinees and 

enhance efficiency in measurement CATs. A brief guide to implementing SC is provided. 

 

Keywords: computerized adaptive tests, low-precision CATs, stochastic curtailment, 

termination rules, variable- length CAT 

 

 

Computerized adaptive tests (CATs), which use item response theory (IRT) and principles of 

artificial intelligence and machine learning to customize item selection for examinees, allow test 

items and test length to vary across examinees. CAT administrators commonly determine an appro-

priate test length for each examinee by setting a target observed standard error of measurement 

(SEM) level. Each additional item administered adds new information about the examinee’s trait 

level, therefore typically reducing their SEM. The test continues administering new items until the 

examinee’s SEM reaches the target level, upon which the test is terminated.
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However, for some examinees, their SEMs can never reach the target level, even if a maximum 

number of items is administered. This usually happens because there is an insufficient number of 

informative items at and around their trait levels so that they cannot be measured precisely and 

reach the target SEM for termination, or because they do not respond to all items according to the 

underlying IRT models, resulting in conflicting information about their trait levels. These 

examinees are referred to as “low-precision cases.” When this happens, it is a waste of time and 

resources for both the examinees and the administrator. A question that has remained unanswered 

over half a century of CAT is: Is it possible to identify low-precision cases early in the admin-

istration of a CAT and end their test as early as possible after the test starts? 

The key to identifying low-precision cases is to estimate an examinee’s SEM at a designated 

full or maximum test length (hereafter referred to as FSEM) when only a limited number of items 

have been administered. For example, if the estimated probability that an examinee’s FSEM will 

reach the target SEM level is only 1%, i.e., there is a 99% chance that the person is a low-precision 

case, then the test can be terminated early. While traditional termination rules [e.g., SEM, mini-

mum information (MI), and others] aim to balance precision and test length, they lack a mechanism 

to probabilistically predict whether an examinee will ultimately achieve the target SEM. What is 

needed is a method to estimate, early in the test, the probability that an examinee’s final SEM 

(FSEM) will meet the target threshold—a capability absent in existing CAT termination rules. 

This gap motivates the application of stochastic curtailment (SC), a statistical procedure 

originally developed for medical clinical trials (Davis & Hardy, 1994). SC evaluates whether 

accumulating data will likely meet a predefined outcome, enabling early termination with mini-

mized risk. Adapting SC to CAT offers a novel solution to the longstanding question: Can we 

identify low-precision cases early in a CAT and terminate their tests efficiently? To date, although 

there have been some applications of SC to psychological testing using sequential testing 

procedures (Finkelman, 2008, 2010; Finkelman et al., 2011, 2012; Sie et al., 2015), there is no SC 

procedure applicable to the measurement of trait levels using CATs.  

This research has two major goals: (1) developing and evaluating a statistical procedure to 

estimate FSEM during a CAT process, and (2) developing and evaluating a SC procedure based 

on the FSEM estimation procedure. It will not only contribute to the literature on SC and test 

termination in CAT, but also bring substantial benefits to those implementing CATs by saving time 

and resources for both examinees and administrators in low-precision cases. 

 

Related Research 

 

The termination rule of a variable-length CAT, i.e., under what conditions will the CAT be 

ended, is one of its essential elements (Weiss & Kingsbury, 1984; van der Linden & Glas, 2010; 

Weiss & Şahin, 2024 ). One of the most commonly used termination rules is the SEM rule, which 

states that the test proceeds until the observed SEM of the 𝜃 estimate equals or falls below a pre-

specified level (Weiss & Kingsbury, 1984). Theoretically, the SEM rule ensures that every 

examinee can be measured with equal precision regardless of their true 𝜃 levels, as long as the 

item bank has sufficient information across the 𝜃  regions of interest (Dodd et al., 1989, 1993; 

Revuelta & Ponsoda, 1998; Wang & Wang, 2001). However, in cases when some regions of 𝜃 do 

not have sufficient informative items, examinees whose 𝜃 levels are in those regions might not 

reach the pre-specified SEM level, even if all items in the bank are exhausted. A common scenario 

under which low-precision cases will occur is examinees with extreme 𝜃 levels tested under an 
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item bank with a peaked information function, in which the number of informative items at extreme 

𝜃 levels is small (Choi et al., 2011).  

A number of alternative termination rules have been proposed to deal with the limitations of 

the SEM rule, such as the MI rule (Gialluca & Weiss, 1979; Maurelli & Weiss, 1981), the predicted 

standard error reduction (PSER) rule (Choi et al., 2011), and the change in 𝜃 (CT) rule (Babcock 

& Weiss, 2012; Wang et al., 2019). Each rule has been shown to be able to reduce the needless 

administration of uninformative items to some extent, but each has its own limitations (Babcock 

& Weiss, 2012; Wang et al., 2019). The MI rule stops the test once every remaining item falls 

below a fixed information threshold; in banks with peaked information functions this can  truncate 

tests prematurely, because a large bank of low-discrimination items might still, in aggregate, 

provide enough information to attain the target SEM had they been administered, thereby biasing 

scores for examinees located in the extremes of the trait continuum. The PSER rule projects how 

much the SEM would shrink if another item were delivered and ends the test when the expected 

gain is minimal; however, those projections are model-based and can be badly mis-calibrated when 

the current θ estimate is unstable or when the algorithm’s look-ahead horizon is set too short—

each scenario inflating premature terminations and widening between-person precision inequities. 

Finally, the CT rule monitors successive θ estimates and terminates once their absolute difference 

drops below a pre-specified threshold; because it ignores the SEM, it can declare convergence 

even when information is sparse (yielding imprecise scores), or it can prolong testing for exam-

inees near item-bank information peaks where θ estimates oscillate minutely but SEM is already 

satisfactory; moreover, its convergence constant is typically chosen ad hoc, so its operating charac-

teristics vary unpredictably across banks and   regions. 

Researchers have also proposed compound rules that combine the SEM rule and another rule 

to yield the advantages of both, such as the SEM+MI rule (Babcock & Weiss, 2012) and the SEM 

+ change-in-𝜃  rule (Wang et al., 2019). However, there are still unresolved issues using these 

compound rules. First, compound rules might still lead to premature termination; for example, the 

SEM+MI rule states that a CAT will be terminated if either the observed SEM drops below the 

pre-specified level under the SEM rule or all non-administered items have less information than 

some specified minimal amount of information (Babcock & Weiss, 2012). However, for a large 

item bank with a peaked information function, there might be an abundant number of low-

informative items such that the pre-specified SEM is attainable across the entire range of 𝜃. But if 

a large number of these items carry less information than the minimal information stated in the MI 

rule, the CAT will be terminated without administering these items, which would have increased 

the measurement precision to the target level had they been administered. An example is the K-12 

reading achievement item bank studied by Lee (2019). It has 1,089 items, but the average of their 

discrimination parameters is only .88 (with D = 1.7), meaning that many of them provide relatively 

small amounts of information. 

Moreover, to change the termination rule from the SEM rule to another rule during a CAT, 

therefore sacrificing precision for efficiency, might not be aligned with the goals of the test. For 

example, in educational testing, measuring each examinee with equal precision (i.e., equiprecise 

measurement) is essential to ensure fairness (Weiss & Kingsbury, 1984); in health outcomes 

research, an SEM stopping rule has been used because there is a need to measure individuals with 

severe medical problems accurately (Ware et al., 2000, 2003, 2005).  

Therefore, switching to a secondary termination rule or a compound rule does not fully resolve 

the issue of low precision. During a CAT process, whenever it is doubtful whether an examinee 

can attain the pre-specified SEM, it will be extremely helpful if the FSEM of the examinee can be 
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estimated. If the FSEM can be predicted to reach the pre-specified SEM level, the CAT process 

can proceed as planned (and FSEM evaluated after each item) and potentially be terminated by the 

SEM rule; otherwise, the administrator might decide to terminate the CAT, change the target SEM 

level, or switch to a different termination rule, depending on the measurement objectives of the 

test. Moreover, in the CAT termination literature to date, none of these termination methods, either 

single or compound, estimates the FSEM or evaluates how the method functions relative to the 

actual SEM during the test. In order to estimate FSEM, the statistical procedure of SC can be 

applied. 

SC procedures were initially developed for phase II clinical trials in drug evaluation (Halperin 

et al., 1982; Davis & Hardy, 1994; Ayanlowo & Redden, 2007; Law et al., 2020, 2022) to predict 

if adding more subjects to the trial has the potential to result in a defined positive outcome (e.g., 

improvement in symptoms for a specified proportion of patients); if the prediction is negative the 

trial is stopped, and if positive it is continued. SC has been adapted to psychological testing since 

the 2000s, but only to classification tests such as the sequential mastery test (SMT; Finkelman, 

2008, 2010), in which an examinee receives a binary classification decision (e.g., master/non-

master). To reduce test length, the truncated sequential probability ratio test (TSPRT; Finkelman, 

2008, 2010) can be applied to determine whether sufficient information has accrued about the 

examinee’s trait level to allow a classification decision be made. Using monte-carlo simulation 

designs, Finkelman (2008, 2010) applied SC and showed that it considerably reduced the average 

test length of a SMT with only a slight decrease in accuracy. Using a post-hoc simulation design 

with real response data, the procedure has also been shown to reduce the average number of 

questions administered with a minimal loss of classification accuracy in the Medicare Health 

Outcomes Survey (Finkelman et al., 2011) and the Center for Epidemiologic Studies Depression 

scale (Finkelman et al., 2012). 

However, most psychological tests measure constructs along a trait continuum, such as a test 

that measures a student’s math aptitude, a patient’s depression level, or a job applicant’s cognitive 

ability. CATs applied to these tests are referred to as measurement CATs in comparison to 

classification CATs discussed above. In these tests, the SC procedures developed for SMTs do not 

apply because the purpose of the test is to obtain a point estimate of 𝜃. However, it is meaningful 

to specify hypotheses about the FSEM and develop a procedure to test hypotheses focusing on 

measurement precision. This allows the CAT algorithm to monitor whether an examinee can attain 

the pre-specified SEM level during the test and take the appropriate action. To date, no work has 

been done to develop such a procedure. This research is designed to fill this gap. 

Method 

Development 

 

To perform SC, it is essential to estimate FSEM when only a limited number of items have 

been administered. Development of the method proceeds in two steps: (1) derive the probability 

distribution of FSEM based on the central limit theorem (CLT), which is a statistical technique 

commonly used in sequential analysis (Finkelman, 2008); and (2) develop a SC rule based on the 

probability distribution of FSEM derived in the previous step. The rule will be a hypothesis testing 

procedure to determine if SC should be applied for an examinee. 
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Probability Distribution of FSEM 

 

Assume a CAT process in which the items have dichotomously or polytomously scored 

responses. The maximum test length is 𝑁. After administering 𝑘 items, given the uncertainty in 

the selection of the remaining 𝑁 − 𝑘 items and the estimate of 𝜃, FSEM can be treated as a random 

variable that follows a probability distribution.  

Denote FSEM as 𝑠𝑒𝑚(𝜃𝑁|𝒖𝑘), where 𝒖𝑘 denotes the response vector for the 𝑘 administered 

items and 𝜃𝑁 denotes an estimator of the examinee’s   level at the pre-specified maximum test 

length. Importantly, the asymptotic variance of 𝜃𝑁 equals the reciprocal of its Fisher information 

under maximum likelihood estimation (MLE). Therefore, there is a one-to-one relationship 

between 𝑠𝑒𝑚(𝜃𝑁|𝒖𝑘) and the observed information (van der Linden & Glas, 2010, p.16) of the 

test, denoted as 𝐽(𝜃𝑁|𝒖𝑘): 

 

 
𝐽(𝜃𝑁|𝒖𝑘) =

1

𝑉𝑎𝑟(𝜃𝑁|𝒖𝑘)
=

1

[𝑠𝑒𝑚(𝜃𝑁|𝒖𝑘)]
2 , (1) 

 
where the observed information of a test or an item is defined as the negative of the second-order 

derivative of its likelihood function conditional on the 𝜃 estimate. More technical details can be 

found in Appendix A. 

The following discussion focuses on 𝐽(𝜃𝑁|𝒖𝑘) instead of 𝑠𝑒𝑚(𝜃𝑁|𝒖𝑘) because 𝐽(𝜃𝑁|𝒖𝑘)  can 

be expressed as the sum of individual item information, assuming local independence among items. 

This relationship enables the application of CLT-based approximations by taking advantage of the 

additivity of individual item information. Assuming 𝑁 − 𝑘 is sufficiently large, the CLT implies 

that 

 

                               𝐽(𝜃𝑁|𝒖𝑘) ~ 𝑁(𝜇, 𝜎2) ,    (2) 

where 𝜇 = 𝐸[𝐽(𝜃𝑁|𝒖𝑘)], 𝜎2 = 𝑉𝑎𝑟[𝐽(𝜃𝑁|𝒖𝑘)]. Equation 2 says that (1) 𝐽(𝜃𝑁|𝒖𝑘) approximately 

follows a normal distribution; and (2) the mean and variance of this normal distribution can be 

approximated by the empirical mean and variance of the observed information of the test, which 

can be calculated using the formulas in Appendix B. 

There are two obstacles to estimating the empirical information’s mean and variance: First, 

after 𝑘 administered items, the remaining 𝑁 − 𝑘 items are unknown, so an item projection method 

is needed to select 𝑁 − 𝑘  items from the item bank; second, 𝜃𝑁  is unknown, so it needs to be 

estimated. There are three approaches to resolve these issues, namely maximum information (MI), 

maximum posterior-weighted information with uniform prior (MPWI-U), and maximum 

posterior-weighted information with a normal prior (MPWI-N). The details are described in 

Appendix C. 

 
The SC Rule  

 

After deriving the probability distribution of 𝐽(𝜃𝑁|𝒖𝑘), a null-hypothesis significance test can 

be conducted after each CAT item to determine whether SC should be triggered. The null and 

alternative hypotheses are, 
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                         𝐻0: 𝜏 ≤ 𝜏0  𝑣𝑠.   𝐻𝑎: 𝜏 > 𝜏0 , (3) 

where 𝜏 is the true FSEM of the examinee, and 𝜏0 is the pre-specified SEM threshold that will 

terminate the test. Because of the inverse relationship between information and SEM, an 

alternative way to state the hypotheses is:  

 

 𝐻0: 𝐽 ≥ 𝐽0  𝑣𝑠.   𝐻𝑎: 𝐽 < 𝐽0 , (4) 

where 𝐽  is the true observed information of the examinee, 𝐽0  is the amount of information 

corresponding to 𝜏0, i.e., 𝐽0 = 1/𝜏0
2. The null hypothesis states that the FSEM is equal to or below 

the threshold; these examinees are referred to as high-precision cases. The alternative hypothesis 

states that the FSEM is greater than the threshold; they are referred to as low-precision cases. 

Based on the distribution of FSEM derived in the previous section, the test statistic can be 

constructed as 

 

𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  

𝐸[𝐽(𝜃𝑁|𝒖𝑘)] −
1
𝜏0

2

√𝑉𝑎𝑟[𝐽(𝜃𝑁|𝒖𝑘)]

 (5) 

 

and compared to 𝑧1−𝛼, which is the critical value at the (1 − 𝛼)𝑡ℎ quantile of the standard normal 

distribution. If the test statistic is less than 𝑧1−𝛼, then do not reject the null (the examinee is a high-

precision case) and do not perform SC; if the test statistic is equal to or larger than 𝑧1−𝛼, then reject 

the null (the examinee is a low-precision case) and perform SC.  

 

Evaluation 

 

Method 

  

The FSEM estimation procedure and the SC rule were evaluated with simulated response data 

and real data, based on its performance under a variety of conditions assumed to affect its 

performance. The following design factors were considered in the monte-carlo simulations:  
 
1. Item bank characteristics, which is essential to the operation of CAT (Weiss & Şahin, 

2024); 

2. True 𝜃 level. Because item bank information usually varies across the 𝜃 continuum, the 

performance of the FSEM estimation procedure and the SC rule for examinees with 

different 𝜃 levels were expected to be different; 

3. Maximum test length (𝑁) and target FSEM level (𝜏). Longer tests result in smaller FSEMs, 

so 𝑁 and 𝜏 were jointly investigated;  

4. Item projection method, i.e., the three methods for projecting items for the remaining CAT; 

and  

5. Starting point of applying the SC rule, i.e., after how many administered items should a 

CAT start to apply the SC rule, which is an important issue in its implementation. 
 

Item bank characteristics. Three item banks were evaluated. Two banks of dichotomously 

scored items were simulated, each with 200 items. Their item parameters followed the distributions 
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in Table 1. Item parameters were for the three-parameter logistic model with D = 1.7. The third 

bank was an item bank with ordinal polytomous items from a real dataset. It measured applied 

cognition based on patient reports obtained in a hospital setting (Wang et al., 2022) using the 

graded response model (Samejima, 1968). The distribution of the item parameters for the dichot-

omous banks are presented in Table 1 and for the polytomous bank are presented in Table 2. 

 

Table 1. Item characteristics of the two dichotomous item banks 

Item Bank Discrimination (𝑎𝑖) Difficulty (𝑏𝑖) Guessing (𝑐𝑖) 

High-information N(1.25, . 252) N(0, 1.22) .2 

Low-information N(.8, . 252) N(0, . 82) .2 

 

 

Table 2. Item parameters of the low-information real polytomous item bank 

Statistic Discrimination (𝑎𝑖) Boundary 1 (𝑏𝑖1) Boundary 2 (𝑏𝑖2) Boundary 3 (𝑏𝑖3) 

Mean 

S.D. 

.81 

.18 

-4.13 

.85 

-2.32 

.70 

-.73 

.83 

 

The distributions of the item parameters for the two simulated dichotomous item banks were 

determined in reference to real item banks. The high-information bank was similar to a bank that 

measures K-12 math ability (Phadke, 2017) and the low-information bank was similar to a bank 

that measures K-12 reading ability (Lee, 2019). Some minor adjustments on the parameters were 

made to make their bank information functions more differentiated, as depicted in Figure 1. 

 

Figure 1. Information functions of the three item banks 

 
This study did not investigate item banks with equal measurement precision across the 

𝜃 continuum (Kim-Kang & Weiss, 2008) because this study focused on low-precision caused by 

an insufficient number of informative items in regions of the bank. Other causes of low-precision, 

such as examinees not responding to items according to the underlying IRT models, which affects 
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observed information, were not investigated in the simulations. Therefore, only item banks with 

an inverted-U shape information pattern, which might cause insufficient test information in regions 

of 𝜃, were generated for the dichotomous banks. 

True 𝜽  level. For the two dichotomous banks, five true 𝜃  levels were investigated: 𝜃 =
{−2, −1 ,0, 1,2} (Lee, 2015; Phadke, 2017). There were 1,000 simulees at each 𝜃 level. Given the 

peaked shape of the bank information functions, these values were chosen to investigate how the 

centeredness or extremeness of true   levels, corresponding to different levels of bank information, 

affected the performance of the FSEM estimation procedure and the SC rule. Note that the 

information functions of the two dichotomous banks peaked at around 𝜃 = 0 , therefore the 𝜃 

levels were chosen to be symmetric about 0. For the polytomous bank, seven true 𝜃 levels were 

investigated: 𝜃 = {−4, −3 − 2, −1, 0, 1, 2}. This bank peaked at around 𝜃 = −2, so 𝜃 levels from 

−4 to 0 were chosen. In addition, 𝜃 = 1  and 𝜃 = 2  were chosen to allow comparison with the 

dichotomous banks at those trait levels. 

𝐍 and 𝝉.  Using the three item banks, sets of preliminary simulations were run to determine 

the relationship between 𝑁  and FSEM and the appropriate values of 𝜏 ; These simulations are 

described in Appendix D along with their results. Table 3 displays the 𝜏 values selected for each 

of the item banks and test lengths. 

  

Table 3. Termination SEMs (τ) for each item bank and test length (N) 

Item Bank N = 20 N = 30 N = 40 

High-information 

dichotomous  .26 .23 .20 

Low-information 

dichotomous  .33 .30 .27 

 N = 15 N = 20 N = 25 

Low-information 

polytomous  .43 .40 .37 

 

Item projection method. The uncertainty in selecting the 𝑁 − 𝑘 items is a major source of 

uncertainty in estimating FSEMs. The three item projection approaches discussed in the previous 

section, namely MI, MPWI-N, MPWI-U, were evaluated. 

Starting point of applying SC rule. The simulation process began to evaluate the SC rule 

after administering 5 items, because previous work showed that the performance of SC is 

unsatisfactory before 5 items for polytomous item banks (DeWeese & Weiss, 2023). The 

evaluation process continued after every item until the (𝑁 − 1)𝑡ℎ item, which is the last possible 

item to apply the SC rule. In other words, denoting the number of administered items as 𝑘, the SC 

rule was evaluated at 𝑘 = 5, 6, … , 𝑁 − 1, which totals 𝑁 − 5 evaluation points. The performance 

of the SC rule at each value of 𝑘  against the evaluation criteria, which are discussed below, 

determined the optimal value of 𝑘  to apply the SC rule under an item bank and the other 

manipulated variables. 

Summary. For each dichotomous item bank, the number of simulation conditions given 𝑁 

equaled the product of 5 (true   levels)  3 (N and  values)  (N – 5) (evaluation points). For the 

polytomous bank, the number of simulation conditions given 𝑁 was 7 (true   levels)  3 (N and 
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 values)  (N – 5) (evaluation points). Table 4 lists the numbers of simulation conditions. The 

total number of simulation conditions for this study was 1,125 × 2 + 945 = 3,195.  

 

Table 4. Number of simulation conditions for the three banks 

Item Bank N=20 N=30 N=40 Total 

High-information 

dichotomous  
225 375 525 1,125 

Low-information 

dichotomous  
225 375 525 1,125 

 N=15 N=20 N=25 Total 

Polytomous  210 315 420 945 

 

Evaluation of the Method 

 

Under each simulation condition (a combination of an item bank, a fixed 𝜃  level, a set of 

𝑁 and 𝜏 values, and an evaluation point 𝑘), the following process was randomly replicated 1,000 

times: 

1. Administer the first 5 items. The starting 𝜃 was 0. 𝜃 was estimated with MLE. If responses 

were uniform, then maximum a priori estimation with a standard normal prior was used 

until a mixed response pattern was obtained. Items were chosen to maximize the expected 

Fisher information conditional on the current 𝜃 estimate. 

2. Obtain the probability distribution of test information (TI) after administering 𝑘 items, 

where 𝑘 = 5, 6, … , 𝑁 − 1. Then apply the SC rule. If the null hypothesis is rejected at the 

5% level, the examinee will be predicted as a low-precision case. Otherwise, it will be 

predicted as a high-precision case. In addition, estimate FSEM using the formula 𝐹𝑆𝐸𝑀 =

1/√TI, where the value of TI is the mean of its distribution. 

3. Administer the remaining 𝑁 − 𝑘 items and estimate   using MLE. Obtain the actual FSEM. 

If the actual FSEM is greater than the threshold level 𝜏, the examinee is an actual low-

precision case. Otherwise, it is an actual high-precision case. 

A graphical illustration of the procedures described above is presented in Figure 2. 

 

Evaluation Criteria 

  

FSEM estimation procedure. To evaluate the performance of the FSEM estimation procedure, 

mean absolute error (MAE) and mean bias (MB) between the estimated FSEM (from Step 3 above) 

and the actual FSEM (from Step 2 above) were computed. They are defined as  

 

 
𝑀𝐴𝐸𝐹𝑆𝐸𝑀 =

∑ |𝐹𝑆𝐸𝑀𝑒𝑠𝑡∙𝑖 − 𝐹𝑆𝐸𝑀𝑎𝑐𝑡𝑢𝑎𝑙∙𝑖|
𝑛
𝑖=1

𝑛
 

(6) 

 
𝑀𝐵𝐹𝑆𝐸𝑀 =

∑ (𝐹𝑆𝐸𝑀𝑒𝑠𝑡∙𝑖 − 𝐹𝑆𝐸𝑀𝑎𝑐𝑡𝑢𝑎𝑙∙𝑖)
𝑛
𝑖=1

𝑛
 

(7) 
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where 𝐹𝑆𝐸𝑀𝑒𝑠𝑡∙𝑖 is the estimated FSEM in the 𝑖𝑡ℎ replication, 𝐹𝑆𝐸𝑀𝑎𝑐𝑡𝑢𝑎𝑙∙𝑖 is the actual FSEM in 

the 𝑖𝑡ℎ replication, and 𝑛 is 1,000. MAE indicates the magnitude of the estimation error, or how 

much the estimated FSEM deviates from the actual FSEM, on average. MB indicates whether 

estimated FSEM is larger or smaller than actual FSEM, on average. A positive MB means that the 

estimated FSEM is larger than the actual FSEM, on average, whereas a negative MB means that 

estimated FSEM is smaller than actual FSEM, on average.  

 

Figure 2. Evaluation process of the FSEM estimation procedure and the SC rule 

 
SC rule. To evaluate the performance of the SC rule, positive predictive value (PPV), true 

positive rate (TPR), and false positive rate (FPR) were examined. They are defined in Table 5. 

 

Table 5. Hypothesis testing results and metrics for evaluating the SC rule 

 

Predicted state  

High-precision 

(negative) 

Low-precision 

(positive) 
 

True state 

High-precision 

(negative) 

Correct 

(true negative) 

Type I error 

(false positive) 

𝐹𝑃𝑅
= 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 

Low-precision 

(positive) 

Type II error 

(false negative) 

Correct 

(true positive) 

𝑇𝑃𝑅
= 𝑇𝑃/(𝐹𝑁 + 𝑇𝑃) 

   
𝑃𝑃𝑉
= 𝑇𝑃/(𝐹𝑃 + 𝑇𝑃) 

 

 

High-precision was defined as negative and low-precision was defined as positive. The most 

important criterion was designated as PPV, which is the proportion of procedure-predicted low-

precision cases that actually were low-precision. It answered the question “When the procedure 

predicts that the examinee is a low-precision case, how confident are we in this prediction?” PPV 

was important because whenever the procedure predicts a low-precision case, the test will be 

curtailed. A low PPV means a large proportion of the predicted low-precision cases, which actually 
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were high-precision cases, will be terminated prematurely. From a practical perspective, this is 

highly undesirable, because these examinees could have reached the termination SEM.  

In many simulation studies, recovery of true value is evaluated by TPR, also known as power 

(Wang et al., 2021; 2019). In this context, TPR was the proportion of low-precision cases in the 

population that can be correctly identified by the procedure. While a high TPR is desirable, a low 

TPR does not have dire consequences because if a low-precision case is mistakenly predicted as a 

high-precision case, the test just continues. The examinee will take unnecessary items, but it is less 

detrimental than the scenario that a high-precision examinee is mistakenly predicted as a low-

precision case and therefore terminated prematurely, which is captured by a low PPV. Nevertheless, 

TPR is still an important measure of the efficiency of the SC procedure, therefore it was considered 

as a secondary criterion.  

FPR was defined as the proportion of high-precision cases in the population that were mis-

takenly predicted as low-precision cases by the procedure. These cases will be mistakenly curtailed, 

resulting in premature termination of the test, which is undesirable. However, at extreme 𝜃 values, 

which were of primary interest in this study, only a small portion of the examinees were high-

precision cases. Therefore, even when the FPR was high, the actual number of false positive cases 

will still be small. Therefore, FPR was used as another secondary criterion. 

Test length. In addition, the reductions in average test length (ATL) were computed to deter-

mine the effectiveness of the SC procedure. Specifically, for each simulee, a CAT without SC was 

simulated using the specified value of   to determine the actual test length. Then, a CAT with SC 

was simulated, and the number of items administered before SC was triggered was the test length 

under SC. The difference between the actual test length and the test length under SC, averaged 

across the number of simulees, was the reduction in ATL. 

 

Software 

 

All simulations were conducted using R statistical software (R Core Team, 2024).  

Results 

FSEM Estimation 

 

Results are presented below for the 20-item CATs because that test length was common across 

the two item formats.  Detailed results for other test lengths are in Appendix E and Appendix F. 

MAE. The MAE results in Figure 3 and Table 6 show several consistent patterns for MAE 

with 20-item CATs: (1) For all 𝜃 values and item projection methods, MAE decreased as the test 

proceeded; (2) the MAEs at the center of the 𝜃 continuum were lower than at the extreme; (3) the 

MAEs under the low-information bank (Figure 3b) were generally higher than under the high-

information bank (Figure 3a); (4) the three item projection methods generally had similar 

performance; in the few conditions where they differed it was primarily at the beginning of the 

tests. Similar patterns were observed for tests with other maximum test lengths; see Appendix 

Figures E4, E5, and E6. 

MB. Generally, Figure 4 and Table 7 show that MB remained stable under most conditions, 

with slight decreases in the early stages of the CATs. In addition, none of the three item projection 

methods showed consistent directional bias across the three item banks. MB was larger at extreme 
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𝜃 values. Among the three item projection methods, MPWI-N had the largest bias particularly for 

longer tests (Figures E8 and E9) for longer CATs drawn from low information banks.  

 

SC Procedure 

 

PPV. PPV results are presented for extreme 𝜃 values only, because extreme  values were the 

primary focus of the study. Given the high proportion of true low-precision cases at these 𝜃 values, 

a PPV of 80% was set as the benchmark for the procedure, a value that is recommended by some 

medical researchers (e.g., Winters et al., 2016) for PPV. In general, Figure 5 and Table 8 show that 

the PPVs were above 80% under most circumstances. Importantly, PPVs were higher when bank 

information was low. Comparing the low-information dichotomous bank (Figure 5b) to the high-

information dichotomous bank (Figure 5a), the PPVs were almost uniformly higher. Under the 

polytomous bank (Figure 5c), PPVs were almost uniformly 100% under the most extreme 𝜃 values 

of  = 1 and 2. Under less extreme values of −4 and 0, PPVs were still high, but they were lower 

and fell below 80% for the first few items when   = 0. The three item projection methods had 

similar performance. Similar patterns were observed for other maximum test lengths except for 

some minor differences; at 𝜃 = 2 under both dichotomous banks, the PPVs were slightly lower for 

the 30-item tests than the 20-item and 40-item tests (Figures E10 and E11), and at 𝜃 = 0 under the 

polytomous bank, the PPVs were slightly higher for the 15-item test and slightly lower for the 25-

item test (Figure E12). 

TPR. Optimal power is widely accepted as 0.8 based on Cohen’s (1992) recommendations to 

balance high power with demands on the researcher to recruit enough participants. TPR’s perfor-

mance was determined by the complex interactions among item bank, 𝜃 value, SC position, and 

item projection method. Several patterns were observed (Figure 6 and Table 9): (1) TPRs under 

low-information scenarios were higher than high-information scenarios; (2) MPWI-U performed 

better than the other two methods, especially at the beginning of the test under the two dichotomous 

item banks. In particular, the TPRs were above 80% under the low-information dichotomous bank 

and fluctuated between 60% and 90% under the high-information dichotomous bank; (3) at 𝜃 = 1 

and 𝜃 = 2  under the low-information polytomous bank, TPRs were close to 100%. Similar 

patterns were observed for other maximum test lengths except for small differences. At 𝜃 = 0 

under the polytomous bank, TPRs decreased slightly as maximum test length increased (Figures 

E13–E15). 

FPR. As shown in Figure 7 and Table 10, the patterns of FPR were highly unstable, primarily 

due to the low number of high-precision cases at extreme 𝜃 values. In particular, when 𝜃 =  2 

under the polytomous bank, there were no high-precision cases and FPRs were non-existent. 

Generally, as the test proceeded, FPRs decreased. In addition, MPWI-U performed worse than the 

other two methods, especially under the dichotomous item banks. Similar patterns were observed 

for other maximum test lengths (Figures E16–E18). 
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Figure 3. MAE of the FSEM estimation procedure for 20-item CATs 

(a) High-information dichotomous, 20 Items 

 
(b) Low-information dichotomous, 20 Items 

 
(c) Low-information polytomous, 20 Items 

 
Note: The black horizontal dashed lines represent the performance benchmarks, which were set at .02, .03, and .04 for the three banks, respectively.  

They equaled roughly 10% of the 𝜏 values in Table 3. 
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Table 6. MAE of the FSEM estimation procedure for 20-item CAT 

(a) High-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI 

-2 .076 .068 .067 .051 .047 .043 .032 .031 .027 .026 .021 .022 .014 .012 .009 

-1 .026 .027 .027 .021 .019 .016 .016 .011 .009 .010 .012 .009 .006 .006 .004 

0 .011 .011 .010 .009 .008 .008 .008 .007 .006 .005 .005 .004 .004 .004 .003 

1 .010 .009 .008 .008 .007 .006 .006 .005 .005 .004 .005 .004 .003 .003 .002 

2 .030 .020 .018 .015 .015 .015 .014 .015 .012 .010 .008 .007 .005 .005 .003 

MPWI-N 

-2 .051 .042 .040 .038 .033 .034 .028 .025 .022 .024 .018 .020 .014 .012 .009 

-1 .031 .028 .024 .024 .020 .019 .018 .013 .011 .011 .013 .010 .006 .006 .004 

0 .019 .018 .013 .012 .010 .011 .009 .007 .007 .006 .006 .005 .004 .004 .003 

1 .021 .016 .013 .011 .010 .008 .007 .006 .006 .005 .005 .004 .003 .003 .002 

2 .017 .018 .018 .017 .018 .018 .016 .015 .011 .009 .008 .007 .005 .005 .003 

MPWI-U 

-2 .077 .069 .064 .055 .049 .045 .035 .033 .028 .028 .022 .022 .016 .013 .009 

-1 .058 .047 .038 .036 .028 .025 .022 .016 .013 .013 .014 .012 .007 .007 .004 

0 .035 .030 .019 .018 .014 .013 .011 .008 .008 .006 .006 .005 .004 .004 .003 

1 .033 .021 .016 .013 .011 .009 .008 .007 .006 .005 .005 .004 .003 .003 .002 

2 .046 .040 .032 .029 .025 .021 .018 .017 .013 .010 .009 .007 .006 .005 .003 

 

(b) Low-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI 

-2 .193 .152 .189 .155 .142 .133 .109 .122 .119 .098 .090 .089 .054 .052 .038 

-1 .072 .050 .074 .056 .045 .036 .033 .044 .027 .023 .020 .014 .015 .012 .010 

0 .013 .013 .010 .009 .010 .009 .010 .007 .009 .007 .007 .006 .005 .004 .003 

1 .015 .015 .016 .016 .014 .014 .013 .010 .008 .008 .008 .006 .005 .005 .003 

2 .081 .072 .060 .054 .049 .048 .046 .038 .043 .032 .032 .026 .024 .017 .011 

MPWI-N 

-2 .134 .132 .128 .110 .117 .097 .087 .087 .080 .076 .064 .061 .051 .043 .039 

-1 .038 .032 .036 .038 .031 .029 .025 .029 .022 .020 .018 .013 .014 .011 .010 

0 .021 .018 .016 .013 .011 .012 .011 .009 .010 .008 .007 .007 .005 .004 .003 

1 .022 .020 .017 .016 .014 .013 .012 .010 .008 .007 .008 .006 .005 .005 .003 

2 .066 .062 .057 .052 .049 .047 .045 .037 .039 .033 .031 .024 .024 .020 .013 

MPWI-U 
-2 .132 .122 .137 .118 .113 .107 .091 .102 .096 .087 .078 .077 .051 .050 .038 

-1 .072 .062 .065 .058 .047 .040 .037 .041 .028 .025 .022 .016 .015 .012 .010 
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0 .040 .031 .024 .019 .015 .015 .013 .010 .010 .008 .008 .007 .005 .004 .003 

1 .044 .035 .029 .024 .020 .017 .016 .012 .010 .009 .008 .007 .006 .005 .003 

2 .055 .053 .053 .050 .044 .044 .043 .037 .041 .031 .032 .026 .024 .017 .011 

 

 

 

(c) Low-information polytomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI 

-4.0 .045 .037 .031 .025 .019 .018 .017 .013 .013 .012 .010 .009 .008 .006 .005 

-3.0 .025 .022 .021 .019 .018 .016 .014 .014 .011 .011 .009 .008 .007 .006 .005 

-2.0 .012 .011 .010 .009 .009 .008 .007 .007 .006 .006 .005 .005 .004 .003 .002 

-1.0 .017 .018 .012 .012 .011 .010 .009 .008 .008 .007 .006 .005 .005 .004 .003 

.0 .045 .049 .040 .032 .035 .032 .027 .020 .021 .018 .016 .013 .011 .008 .006 

1.0 .076 .153 .120 .099 .095 .072 .068 .052 .053 .046 .044 .036 .028 .024 .013 

2.0 .143 .255 .185 .147 .124 .115 .105 .089 .076 .072 .069 .052 .046 .041 .021 

MPWI-N 

-4.0 .057 .050 .045 .037 .031 .028 .025 .020 .019 .016 .014 .012 .010 .007 .005 

-3.0 .019 .018 .016 .017 .015 .015 .013 .013 .011 .011 .010 .008 .008 .006 .005 

-2.0 .012 .011 .009 .009 .008 .008 .007 .007 .006 .006 .005 .005 .004 .003 .002 

-1.0 .020 .019 .013 .013 .012 .011 .009 .009 .008 .007 .006 .005 .005 .004 .003 

.0 .033 .033 .030 .026 .027 .027 .023 .019 .019 .017 .015 .012 .011 .008 .006 

1.0 .077 .073 .067 .066 .061 .053 .054 .044 .046 .040 .038 .031 .026 .025 .015 

2.0 .162 .130 .124 .105 .111 .094 .090 .083 .073 .067 .059 .050 .044 .042 .026 

MPWI-U 

-4.0 .038 .033 .030 .025 .020 .019 .018 .013 .014 .012 .010 .009 .009 .006 .005 

-3.0 .020 .018 .018 .017 .016 .015 .014 .013 .011 .011 .009 .008 .007 .006 .005 

-2.0 .013 .012 .011 .009 .009 .008 .007 .007 .006 .006 .005 .005 .004 .003 .002 

-1.0 .022 .020 .014 .013 .012 .010 .009 .008 .008 .007 .006 .005 .005 .004 .003 

.0 .052 .050 .042 .034 .035 .033 .027 .021 .021 .018 .016 .013 .011 .008 .006 

1.0 .076 .104 .096 .082 .084 .065 .064 .050 .051 .044 .042 .035 .028 .024 .013 

2.0 .092 .130 .120 .105 .099 .095 .089 .079 .068 .065 .063 .049 .045 .040 .021 
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Figure 4. MB of the FSEM estimation procedure for 20-item CATs 

(a) High-information dichotomous, 20 Items 

 
 

(b) Low-information dichotomous, 20 Items 

 
 

(c) Low-information polytomous, 20 Items 
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Table 7. MB of the FSEM estimation procedure for 20-item CATs 

(a) High-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI 

-2 -.022 -.002 .008 -.009 .002 -.007 -.007 .000 -.002 -.008 -.002 -.003 .000 -.004 .000 

-1 -.007 -.002 -.001 -.011 -.004 -.008 -.008 -.006 -.004 -.003 -.006 -.002 -.001 -.002 -.001 

0 -.002 -.001 .001 -.002 .000 -.002 -.003 -.002 -.002 -.002 -.001 -.001 -.001 .000 .000 

1 -.004 -.003 -.002 -.003 -.002 -.002 -.002 -.002 -.002 -.002 -.002 -.001 -.001 -.001 .000 

2 -.030 -.017 -.013 -.006 -.003 -.002 .001 .001 .000 .000 .000 -.001 .000 -.001 -.001 

MPWI-N 

-2 -.028 -.017 -.017 -.019 -.013 -.018 -.015 -.009 -.010 -.014 -.008 -.010 -.004 -.005 -.001 

-1 .009 .009 .004 .000 .003 .000 -.001 .000 .001 .000 -.003 .001 .000 .000 .000 

0 .015 .013 .009 .006 .006 .004 .002 .001 .001 .001 .000 .000 .000 .001 .000 

1 .017 .012 .008 .006 .004 .004 .003 .001 .001 .001 -.001 .000 .000 .000 .000 

2 .000 .005 .003 .005 .005 .004 .004 .001 -.001 -.001 -.002 -.002 -.002 -.002 -.001 

MPWI-U 

-2 .029 .032 .027 .018 .017 .007 .006 .009 .006 -.001 .003 .000 .003 -.001 .002 

-1 .042 .034 .023 .016 .014 .009 .006 .005 .005 .004 .000 .003 .001 .001 .000 

0 .033 .026 .017 .013 .011 .008 .005 .003 .002 .001 .001 .001 .000 .001 .000 

1 .031 .018 .012 .009 .006 .005 .004 .002 .001 .001 .000 .000 .000 .000 .000 

2 .040 .032 .022 .021 .017 .012 .010 .007 .004 .003 .002 .001 .001 .000 .000 
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(b) Low-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI 

-2 .001 -.026 .047 .041 .014 .036 .029 .044 .044 .026 .035 .045 .017 .009 .005 

-1 .015 .011 .033 .007 .009 .001 .005 .010 .001 .004 .002 .001 .001 .000 .000 

0 -.001 -.001 -.003 -.003 .000 -.003 -.004 -.002 -.005 -.002 -.001 -.001 -.001 -.001 -.001 

1 -.001 .003 .004 .005 .003 .003 .005 .001 .000 .001 -.001 .000 .000 -.001 .000 

2 -.079 -.069 -.050 -.032 -.024 -.020 -.012 -.005 .003 .000 .006 .005 .004 .002 .000 

MPWI-N 

-2 -.125 -.119 -.108 -.089 -.098 -.073 -.060 -.057 -.050 -.044 -.032 -.022 -.017 -.017 -.009 

-1 -.008 -.002 -.001 -.007 -.003 -.005 -.003 -.006 -.005 .001 .000 .000 -.001 -.001 .000 

0 .016 .012 .010 .008 .006 .004 .002 .002 -.001 .001 .001 .001 .000 .000 -.001 

1 .016 .015 .012 .010 .007 .005 .006 .003 .001 .002 .000 .001 .000 -.001 .000 

2 -.061 -.055 -.047 -.043 -.038 -.036 -.030 -.023 -.018 -.017 -.011 -.008 -.006 -.005 -.003 

MPWI-U 

-2 -.015 -.016 .017 .025 .001 .024 .022 .031 .027 .021 .025 .035 .016 .009 .005 

-1 .044 .043 .043 .028 .024 .016 .017 .015 .008 .011 .008 .004 .003 .002 .001 

0 .038 .028 .021 .015 .012 .009 .005 .005 .001 .002 .002 .001 .000 .000 -.001 

1 .041 .033 .026 .020 .015 .012 .012 .007 .004 .004 .002 .002 .002 .000 .001 

2 .000 -.001 .001 .000 -.002 -.003 .000 .002 .009 .003 .008 .006 .005 .002 .001 
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(c) Low-information polytomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -4 -.011 -.008 -.005 -.004 -.003 -.003 -.002 -.001 -.002 -.001 -.001 -.002 .000 .000 .000 

MI -3 .003 .004 .002 .003 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000 

MI -2 .002 .001 .001 .000 .001 .000 .001 .000 .000 .000 .001 .000 .000 .000 .000 

MI -1 .004 .004 .002 .002 .002 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 

MI 0 .008 .010 .013 .012 .011 .007 .006 .004 .005 .003 .004 .002 .002 .001 .000 

MI 1 -.054 -.037 -.034 -.017 -.015 -.009 .001 -.001 .002 .009 .011 .007 .006 .004 .002 

MI 2 -.153 -.128 -.099 -.085 -.075 -.061 -.046 -.034 -.017 .001 .007 .016 .021 .026 .023 

MPWI-N -4 -.031 -.028 -.025 -.022 -.020 -.018 -.016 -.013 -.012 -.010 -.009 -.008 -.006 -.004 -.002 

MPWI-N -3 -.005 -.004 -.005 -.004 -.004 -.003 -.003 -.002 -.003 -.002 -.002 -.002 -.001 -.001 -.001 

MPWI-N -2 .005 .004 .003 .002 .001 .001 .001 .001 .000 .001 .001 .000 .000 .000 .000 

MPWI-N -1 .012 .010 .007 .007 .006 .004 .003 .002 .002 .002 .001 .001 .001 .000 .000 

MPWI-N 0 .008 .008 .011 .009 .009 .006 .005 .004 .005 .003 .003 .002 .002 .001 .000 

MPWI-N 1 -.066 -.055 -.058 -.044 -.040 -.035 -.027 -.024 -.018 -.009 -.006 -.007 -.005 -.002 -.001 

MPWI-N 2 -.157 -.140 -.117 -.111 -.104 -.089 -.080 -.066 -.050 -.033 -.023 -.010 .000 .009 .016 

MPWI-U -4 -.018 -.015 -.013 -.012 -.010 -.010 -.008 -.006 -.006 -.005 -.005 -.005 -.003 -.002 -.001 

MPWI-U -3 .002 .003 .002 .002 .001 .001 .001 .001 .001 .001 .000 .000 .001 .000 .000 

MPWI-U -2 .005 .003 .003 .002 .002 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 

MPWI-U -1 .011 .009 .006 .005 .005 .003 .002 .002 .002 .001 .000 .000 .000 .000 .000 

MPWI-U 0 .027 .022 .023 .018 .017 .012 .010 .007 .008 .005 .005 .003 .002 .001 .001 

MPWI-U 1 .003 .006 -.004 .005 .004 .004 .009 .007 .008 .013 .013 .009 .007 .005 .003 

MPWI-U 2 -.055 -.048 -.039 -.035 -.036 -.024 -.022 -.014 -.003 .011 .014 .021 .025 .027 .024 
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Figure 5. PPVs of the SC procedure for 20-item CATs 

 
(a) High-information dichotomous         (b) Low-information dichotomous       (c) Low-information polytomous 
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Table 8. PPVs of the SC procedure for 20-item CATs 

(a) High-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI 2 .989 .959 .973 1.000 .996 1.000 .997 1.000 1.000 1.000 .997 .997 1.000 1.000 .998 

MI 2 N/A N/A N/A N/A .925 .982 .985 .991 .995 1.000 1.000 .996 1.000 .990 .997 

MPWI-N           -2 .993 .961 .992 1.000 .996 1.000 .996 1.000 1.000 1.000 .997 .997 1.000 1.000 1.000 

MPWI-

N 
2 N/A .804 .896 .919 .900 .952 .953 .971 .982 1.000 .992 .992 .985 1.000 .991 

MPWI-

U 
-2 .860 .935 .944 .964 .983 .994 .989 .997 .997 1.000 .997 .997 1.000 1.000 .998 

MPWI-

U 
2 .745 .804 .896 .867 .886 .907 .947 .975 .988 .996 1.000 .996 .996 .997 1.000 

 
(b) Low-information dichotomous, 20 Items 

    
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -2 1.000 .997 .995 1.000 1.000 1.000 1.000 .998 .998 .996 .998 1.000 1.000 1.000 1.000 

MI 2 N/A .987 .977 .987 .992 .998 .990 .982 1.000 .993 .998 .996 .998 1.000 .996 

MPWI-

N 
-2 1.000 .997 1.000 1.000 1.000 1.000 1.000 .998 1.000 .996 .998 1.000 1.000 1.000 1.000 

MPWI-

N 
2 .975 .987 .977 .997 .992 .997 .995 .995 1.000 .998 1.000 .996 .998 1.000 .996 

MPWI-

U 
-2 .991 .998 .991 .998 .996 1.000 1.000 .996 .996 .996 .998 1.000 1.000 1.000 1.000 

MPWI-

U 
2 .970 .961 .975 .988 .991 .995 .988 .982 1.000 .993 .998 .996 .996 1.000 .996 

 
(c) Low-information polytomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -4 .929 .944 .949 .970 .979 .975 .971 .995 .971 .990 .988 .991 .995 .989 .996 
MI 0 .780 .803 .832 .817 .854 .869 .862 .902 .899 .892 .958 .940 .934 .964 .977 

MI 1 .998 .993 1.000 .998 1.000 .998 .998 .998 .996 1.000 1.000 1.000 1.000 1.000 1.000 

MI 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MPWI-

N 

-4 N/A N/A N/A .990 1.000 1.000 .993 1.000 .994 1.000 .995 .993 1.000 .991 .998 
MPWI-

N 

0 .782 .787 .823 .811 .852 .868 .861 .902 .900 .886 .958 .936 .934 .964 .973 

MPWI-

N 

1 .998 .993 1.000 .998 1.000 .998 .998 .998 .996 1.000 1.000 1.000 1.000 1.000 1.000 

MPWI-

N 

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MPWI-

U 

-4 .875 .947 .965 .972 .983 .977 .983 .997 .975 .990 .988 .991 .995 .989 .996 
MPWI-

U 

0 .768 .761 .824 .807 .844 .854 .863 .885 .892 .879 .954 .932 .931 .964 .973 

MPWI-

U 

1 .998 .991 1.000 .998 1.000 .998 .998 .998 .996 1.000 1.000 1.000 1.000 1.000 1.000 

MPWI-

U 

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Note: N/A means no data.  
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Figure 6. TPRs of the SC procedure for 20-item CATs 
  

 (a)  High-information dichotomous            (b) Low-information dichotomous            (c) Low-information polytomous 
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Table 9. TPRs of the SC procedure for 20-item CATs 
 

(a) High-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -2 .211 .375 .480 .449 .586 .612 .639 .698 .684 .744 .771 .820 .859 .889 .938 

MI 2 .000 .000 .000 .000 .649 .430 .533 .567 .523 .610 .667 .739 .757 .816 .860 

MPWI-N -2 .345 .572 .560 .517 .636 .562 .580 .661 .611 .698 .722 .758 .816 .849 .904 

MPWI-N 2 .000 .724 .616 .570 .699 .532 .661 .625 .592 .599 .664 .701 .737 .797 .854 

MPWI-U -2 .876 .738 .747 .795 .781 .787 .788 .820 .756 .802 .815 .854 .880 .900 .940 

MPWI-U 2 .852 .724 .616 .745 .783 .701 .678 .714 .655 .707 .709 .753 .763 .800 .865 

(b) Low-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -2 .623 .728 .783 .779 .864 .873 .919 .927 .933 .937 .938 .966 .976 .984 .990 

MI 2 .000 .631 .792 .798 .814 .830 .869 .901 .911 .928 .948 .953 .958 .966 .985 

MPWI-N -2 .575 .771 .720 .791 .826 .875 .882 .910 .920 .922 .917 .951 .963 .976 .988 

MPWI-N 2 .753 .631 .792 .737 .818 .803 .815 .855 .901 .899 .931 .941 .954 .958 .981 

MPWI-U -2 .881 .842 .913 .854 .933 .909 .945 .951 .955 .945 .950 .968 .976 .986 .990 

MPWI-U 2 .827 .890 .817 .861 .890 .873 .881 .910 .913 .932 .952 .953 .958 .966 .985 

(c) Low-information polytomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -4 .422 .366 .526 .626 .698 .840 .803 .868 .874 .875 .923 .920 .922 .943 .969 
MI 0 .582 .632 .659 .636 .633 .684 .683 .648 .713 .752 .771 .803 .839 .843 .850 

MI 1 .875 .862 .911 .927 .931 .946 .957 .966 .978 .968 .980 .976 .978 .992 .994 

MI 2 .980 .980 .986 1.000 .994 .998 .998 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MPWI-N -4 .000 .000 .000 .215 .447 .510 .640 .747 .697 .817 .811 .869 .847 .922 .965 
MPWI-N 0 .588 .672 .700 .661 .643 .722 .696 .681 .720 .763 .782 .803 .843 .846 .854 

MPWI-N 1 .881 .892 .923 .935 .935 .952 .959 .966 .978 .968 .980 .976 .978 .992 .994 

MPWI-N 2 .982 .984 .994 1.000 .994 .998 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MPWI-U -4 .061 .345 .353 .598 .754 .819 .768 .861 .854 .860 .921 .912 .919 .943 .969 
MPWI-U 0 .627 .720 .734 .686 .675 .746 .730 .698 .724 .770 .785 .807 .850 .850 .854 

MPWI-U 1 .907 .925 .944 .939 .948 .960 .961 .968 .978 .968 .980 .976 .980 .992 .994 

MPWI-U 2 .982 .992 .994 1.000 .994 .998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Figure 7. FPRs of the SC procedure for 20-item CATs 

 
(a) High-information dichotomous         (b) Low-information dichotomous        (c) Low-information polytomous 
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Table 10. FPRs of the SC procedure for 20-item CATs 

(a) High-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -2 .015 .103 .120 .000 .017 .000 .021 .000 .000 .000 .014 .016 .000 .000 .020 

MI 2 .000 .000 .000 .000 .135 .024 .022 .017 .007 .000 .000 .008 .000 .024 .008 

MPWI-N -2 .015 .147 .040 .000 .017 .000 .021 .000 .000 .000 .014 .016 .000 .000 .000 

MPWI-N 2 .000 .520 .257 .154 .199 .079 .090 .059 .030 .000 .016 .015 .027 .000 .025 

MPWI-U -2 .954 .324 .400 .228 .103 .034 .083 .017 .015 .000 .014 .016 .000 .000 .020 

MPWI-U 2 .799 .520 .257 .350 .255 .214 .104 .059 .022 .007 .000 .008 .007 .008 .000 

(b) Low-information dichotomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -2 .000 .143 .250 .000 .000 .000 .000 .100 .091 .200 .250 .000 .000 .000 .000 

MI 2 .000 .143 .375 .200 .188 .056 .200 .348 .000 .115 .045 .071 .045 .000 .067 

MPWI-N -2 .000 .143 .000 .000 .000 .000 .000 .100 .000 .200 .250 .000 .000 .000 .000 

MPWI-N 2 .346 .143 .375 .040 .188 .056 .100 .087 .000 .038 .000 .071 .045 .000 .067 

MPWI-U -2 .667 .143 .500 .167 .286 .000 .000 .200 .182 .200 .250 .000 .000 .000 .000 

MPWI-U 2 .462 .607 .417 .200 .250 .111 .250 .348 .000 .115 .045 .071 .091 .000 .067 

(c) Low-information polytomous, 20 Items 

Method   
SC point 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

MI -4 .395 .278 .361 .225 .189 .323 .250 .053 .293 .111 .114 .160 .049 .122 .048 

MI 0 .270 .225 .188 .182 .169 .144 .155 .104 .098 .111 .048 .062 .079 .042 .029 

MI 1 .333 .429 .000 .167 .000 .333 .143 .500 .400 .000 .000 .000 .000 .000 .000 

MI 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

MPWI-N -4 .000 .000 .000 .025 .000 .000 .045 .000 .049 .000 .045 .120 .000 .098 .024 

MPWI-N 0 .270 .265 .213 .195 .174 .153 .159 .109 .098 .119 .048 .066 .079 .042 .034 

MPWI-N 1 .333 .429 .000 .167 .000 .333 .143 .500 .400 .000 .000 .000 .000 .000 .000 

MPWI-N 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

MPWI-U -4 .105 .250 .167 .200 .162 .290 .136 .026 .244 .111 .114 .160 .049 .122 .048 

MPWI-U 0 .312 .328 .222 .209 .195 .177 .164 .134 .107 .128 .053 .071 .084 .042 .034 

MPWI-U 1 .333 .571 .000 .167 .000 .333 .143 .500 .400 .000 .000 .000 .000 .000 .000 

MPWI-U 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

          Note: N/A means no data. 
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Reduction in ATL. The results for the reduction in ATL are summarized in Tables 11 and 12. 

The percentage reduction in ATL was between 54% and 67% under both the high- and low-

information dichotomous bank; between 86.6% and 98.0% of the simulees were curtailed for those 

banks. The percentage reduction in ATL was between 57.7% and 65% under the polytomous bank, 

and more than 96.6% of the simulees were curtailed. As Tables F1–F3 show, as maximum test 

length increased, both reduction in ATL and percentage of simulees curtailed increased, though 

longer maximum test length might artificially boost ATL reduction rates. 

 

Table 11. Reduction in average test length under dichotomous banks 

Item bank 

and test 

length 

𝜃 = −2 𝜃 = 2 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

HI, 20 items 1.9 54.5 89.0 1.9 54.4 86.6 

LI, 20 items 13.5 67.3 97.8 13.4 67.1 98.0 

 

Table 12. Reduction in average test length  

under the low-information real polytomous bank 

Item bank 

and test 

length 

𝜃 = −4 𝜃 = 0 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

LI, 20 items 12.8 64.0 99.6 11.5 57.7 96.6 

 

Item bank 

and test 

length 

𝜃 = 1 𝜃 = 2 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

LI, 20 items 12.9 64.7 100.0 13.0 65.0 100.0 

 

Discussion and Implementation Guide 

 

The objectives of this study were two-fold. The first objective was to develop and evaluate a 

procedure to estimate FSEM during a CAT process. Several findings were observed:  

1. Under both dichotomous and polytomous item banks, the estimation procedure was satis-

factory for the range of true 𝜃 within two SDs from its mean. The biases were generally 

below 0.03 or 0.04, or 10 percent of the termination SEMs, except for when 𝜃 = −2 for 

the dichotomous banks. However, as true 𝜃 further deviated from the center, such as when 

𝜃 = 1 and 𝜃 = 2 under the low-information polytomous bank (i.e., 3 and 4 SDs from the 

mean), the quality of FSEM estimation decreased drastically. This was due to the decrea-

sing bank information as 𝜃 became extreme. Therefore, bank information plays a funda-

mental role in the precision of FSEM estimation.  

2. The three item projection methods had comparable performance. MPWI-U performed 

worse than other methods under the high-information dichotomous bank, but not under the 
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low-information bank, especially at extreme 𝜃  values. Presumably this was because 

MPWI-U assigned more weight to extreme 𝜃 values, which improved estimation precision 

when the bank information was low. But when bank information was high, this was 

unnecessary and led to worse results. 

3. MTL did not have an obvious impact on estimation precision, meaning that the procedure 

was robust to maximum test length. 

The second objective of the study was to develop and evaluate a procedure to perform SC 

during a CAT. Results showed that when the true 𝜃 was two SDs or above from the center, PPVs, 

the primary criterion for evaluating the procedure, were mostly above 80% or even close to 100% 

throughout the tests. This was because (1) PPV was positively related to the base rate of low-

precision cases, which were very high at extreme 𝜃 values (Table 13); and (2) the SC procedure 

was highly accurate in making classification decisions at these values. Moreover, PPVs were 

higher when bank information was lower, such as when comparing the low-information to the 

high-information dichotomous bank and comparing the more extreme 𝜃 values to the less extreme 

s under the low-information polytomous bank. The results showed that for simulees with extreme 

𝜃 values, the low-precision alarms given by the SC procedure are highly trustworthy and warrant 

the attention of the test administrator. Maximum test length had minor impact on PPVs, meaning 

that the procedure was robust to maximum test length. 

 

Table 13. Base rates of low-precision cases (%) 

𝜃 High-info 

dichotomous 

Low-info 

dichotomous 
𝜃 

Low-info 

polytomous 

𝜃 = −2 69.2 92.1 𝜃 = −4 91.7 

𝜃 = 2 64.7 99.7 𝜃 = 0 61.0 

   𝜃 = 1 99.6 

   𝜃 = 2 10.0 

 

Secondary criteria, including TPRs and FPRs, were affected by several factors. First, both the 

TPRs and the FPRs tended to be higher under the low-information bank than the high-information 

bank. This could be explained by the fact that when information was insufficient, it was more 

likely that a simulee would be judged as a positive (i.e., a low-precision case), resulting in higher 

proportions of both true positives and false positives. This can be seen from Tables 11 and 12, 

which show that the proportions of simulees curtailed (i.e., predicted to be low-precision) were 

consistently higher under the low-information bank than under the high-information bank. Second, 

MPWI-U generally had higher TPRs and FPRs than the other two methods at the beginning stages 

of the test, especially under the two dichotomous banks1. This was because MPWI-U weighted 

item information with the likelihood function, therefore incorporating the uncertainty in 𝜃 estima-

 
1 An exception was the poor performance of MPWI-U at 𝜃 = −4 under the polytomous bank. The main reason for 

this was that the estimation procedure set the starting 𝜃 to be 0. As a result, for the beginning items, the 𝜃 estimates 

were distant from the true 𝜃 values. Because the low-information bank peaked around 𝜃 = −2, given a negative 𝜃 

estimate that was distant from 𝜃 = −4, it was not surprising that the SC procedure identified the simulee to be a high-

precision case, resulting in a false negative. On the contrary, at 𝜃 = 0, which equaled the starting 𝜃, the 𝜃 estimates 

were close to 0, resulting in more accurate estimates than at 𝜃 = −4. 
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tion in item projection. In particular, it assigned more weights to extreme 𝜃 values when compared 

to MPWI-N. Because extreme 𝜃  values tended to have higher FSEM, the procedure tended to 

estimate a higher FSEM than the two other methods. This was seen in the MB plots, which showed 

that MPWI-U tended to have positive MBs, which in turn resulted in higher TPRs and FPRs, as 

previously discussed. Third, the findings that TPRs were close to 100% at 𝜃 = 1 and 𝜃 = 2 under 

the low-information polytomous banks demonstrated a desirable feature of SC, which was that it 

could achieve perfect classification results at extreme 𝜃 values, which was shown by the near 100% 

curtailment rate (Table 12). The differential performance of the three item projection methods is a 

topic for further exploration. 

To further evaluate the robustness of the SC procedure, supplementary analyses were 

conducted under more balanced conditions across the θ continuum (−2 to 2) (see Appendix G). 

These analyses revealed that SC continued to demonstrate meaningful predictive performance 

even when the base rate of low-precision cases was moderate. For example, at θ = −1 under the 

high-information bank—where the base rate of low-precision cases was approximately 20%—

PPVs increased steadily throughout the test and surpassed 80% by the 10th item. A similar pattern 

was observed under the low-information bank, where the base rate was approximately 40%: PPVs 

began near 60% and also exceeded 80% by the 10th item. These trends suggest that the SC proce-

dure’s predictive validity was not solely attributable to class imbalance, that is, the predominance 

of one case type, whether low-precision or high-precision, within the population. 

Likewise, TPRs remained moderate to high under these balanced conditions, particularly for 

MPWI-U, which identified over half of the low-precision cases by mid-test. FPRs, though initially 

elevated in some cases, declined rapidly to below 5% after 10–12 items. Together, these results 

support the conclusion that the SC procedure can effectively guide early termination decisions 

even when low-precision cases are not highly prevalent, and that its utility extends beyond the 

extreme θ regions emphasized in the main analysis. A more detailed account of these supple-

mentary findings is provided in Appendix G. 

The reduction in test length due to SC was high. In general, the procedure was effective in 

detecting low-precision cases at the early stages of the test and performed curtailment, therefore 

resulting in substantial reductions in test length—the percentage reduction was mostly in the range 

of 50 to 70%. Higher base rate of low-precision cases was associated with larger reduction, which 

was shown in comparing the low-information to the high-information dichotomous bank, as well 

as comparing the more extreme to the less extreme 𝜃 values under the polytomous bank. This 

finding makes the procedure especially useful when information is low. In addition, the longer the 

maximum test length, the larger the percentage reduction in test length. A possible reason was that 

regardless of MTL, it took roughly the same number of starting items to get a reasonably accurate 

estimate of 𝜃 or its likelihood function and thus accurate estimation of FSEM. As a result, the 

larger the MTL, the more the number of items saved. In addition, larger MTL implied a larger 

sample size in central limit approximation, making it more accurate. 

Overall, the study showed that the central limit approximation yielded good estimation of 

FSEM. It is the first of its kind in the literature to show that estimation of FSEM during a CAT 

procedure is possible. Based on the estimation method, an SC procedure was successfully 

developed to reduce test length with reasonable predictive accuracy. 

The present results also contribute to the literature on stochastic curtailment in psychological 

testing. Finkelman (2008) found that in a sequential mastery testing setting, the proportion of 
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correct decisions (PCD) ranged from 5.4% to 99.3%, depending on how far the true 𝜃 deviated 

from the cutoff 𝜃. PCD was equivalent to PPV in this study. Under the high- and low-information 

banks, PPVs ranged from approximately 30% to 100% and approximatley 67% to 100% 

respectively, depending on test length, true 𝜃, item projection method, and SC start point. Note 

that Finkelman’s findings were consistent with this study in that low-information banks had higher 

PCDs or PPVs than high-information banks. Regarding reduction in test length, Finkelman 

reported that the stochastically curtailed TSPRT achieved an average reduction of 15% to 20% of 

test items compared to the TSPRT in an uncurtailed 50-item test, depending on true 𝜃. In this study, 

reduction in test length ranged from 34.8% to 81.7%, depending on item bank, test length, and true 

𝜃. Finkelman (2010) developed some variations of the stochastically curtailed TSPRT method, 

which further reduced the PCD and the reduction in test length. However, due to the different 

testing settings between sequential mastery testing and trait estimation, it is difficult to make direct 

comparisons between this study and Finkelman’s and subsequent studies such as Huebner & Fina 

(2015) and Sie et al. (2015), all of which applied SC to dichotomous classification testing. 

Importantly, the SC rule is not intended to replace existing termination methods but to 

complement them by offering an additional layer of decision support. For instance, if SC predicts 

that a test is unlikely to meet the target SEM, test administrators can choose to curtail the test, 

switch to a less stringent stopping rule, or accept reduced precision—depending on the stakes and 

constraints of the testing context. This flexibility allows SC to support adaptive test design goals 

while minimizing unnecessary burden on examinees, especially those located in low-information 

regions of the trait continuum. By incorporating long-range projections into termination logic, SC 

introduces a practical, anticipatory dimension to the CAT termination framework. 

A comparison between SC and traditional termination rules under different item bank con-

ditions—particularly high- versus low-information regions—would be valuable for clarifying the 

optimal use cases of each method. In high-information regions (e.g., near the center of the θ 

continuum), most termination rules perform well, and SC might offer limited additional benefit, 

making it unnecessary to trigger the SC procedure. However, in low-information regions (e.g., two 

standard deviations from the center of the  scale), SC excels at identifying likely low-precision 

cases early in the test. When SC forecasts a low-precision outcome, the administrator might choose 

to forego SEM-based termination in favor of MI or PSER rules, provided some loss in precision 

is acceptable. Conversely, if SC predicts a high-precision outcome, then continuing under an SEM 

rule is advisable. In this way, SC can guide the choice of termination strategy dynamically, 

balancing efficiency and measurement goals in response to real-time projections. A formal, head-

to-head comparison between SC-based compound rules and existing termination rules under 

matched conditions remains an important direction for future research to quantify their relative 

advantages and trade-offs across diverse testing scenarios. 

The present work aligns with a growing literature on probability-based early stopping rules 

that aim to reduce respondent burden while maintaining decision quality. For example, Smits and 

Finkelman (2014) proposed a variable-length testing procedure based on ordinal regression, in 

which sum scores were forecasted using a proportional odds model and item administration was 

curtailed once prediction uncertainty dropped below a specified entropy threshold. While their 

method was designed for settings where sum scores are the primary outcome and IRT-based CAT 

is inapplicable, it shares conceptual similarities with SC by employing real-time prediction and 

probabilistic early stopping. In contrast, the SC procedure introduced here operates within an IRT 
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framework and focuses on forecasting whether the final SEM will meet a target, enabling 

precision-based decisions. Together, these studies illustrate the broader potential of SC logic 

beyond classification tasks and reinforce the utility of predictive termination rules across measure-

ment paradigms. 

 

Limitations 

 

This study has several limitations. First, the central limit approximation procedure, as the name 

suggests, was an approximation rather than a strict application of the central limit theorem. In a 

real item bank, no two items will likely have identical parameters, so the computation of the sum 

of item information does not conform to the conditions of the central limit theorem. Nevertheless, 

for practical purposes, interest was in the performance of the procedure even though the conditions 

were not strictly met. 

While the CLT provides a useful approximation for estimating the distribution of the final SEM, 

its validity depends in part on the number of remaining items (𝑁 − 𝑘) being sufficiently large. In 

practice, this assumption might not hold when few items remain in the test. Under such circum-

stances, the sampling distribution of the projected SEM might deviate from normality, potentially 

affecting the accuracy of forecast-based decisions. Although the current method relies on the CLT 

for computational efficiency and general applicability, more precise approximations—such as the 

recursive approach described by Huebner and Finkelman (2016)— might be warranted in cases 

where the number of remaining items is small. Although their research was in the context of 

sequential classification tests using the stochastically curtailed sequential probability ratio test, it 

offers a rigorous framework for computing probabilities under finite item constraints, which could 

be adapted to enhance SC-based projections in future implementations. 

Second, the SC procedure gave a binary judgment of whether the FSEM would likely reach 

the termination SEM. In some practical applications, SC termination might not be seen as the sole 

termination rule. Instead, it might be regarded as a procedure to inform the selection of termination 

rules. As explained above, if during a CAT process, the SC procedure determines that it is a low-

precision case, then the test administrator might want to switch to a different termination rule, but 

with the knowledge that a prespecified value of the SEM might not be reachable by an examinee. 

Under these circumstances, Wang et al. (2019) recommend a small change in  estimates repeated 

across two successive items, as a secondary termination criterion. 

Third, the selection of termination SEMs in this study lacked a mathematical basis. The value 

was determined by observing the histogram of the FSEMs such that a reasonable portion of the 

simulees would be low-precision cases and the remaining simulees would be high-precision. A 

different choice of termination SEM will alter the base rates. However, the impact of base rate on 

results has already been demonstrated and discussed in the current study. Further studies that are 

designed to replicate and extend this study can experiment with different termination SEMs and 

different methods to determine appropriate termination SEMs. 

Fourth, while this study focused on positive predictive value (PPV), true positive rate (TPR), 

and false positive rate (FPR), negative predictive value (NPV) was also considered as a potential 

secondary metric. However, it was decided not to include NPV in the primary analysis because its 

interpretive value is more limited in the context of test termination decisions. NPV reflects the 

proportion of examinees predicted to be high-precision who actually achieved the target SEM. 

While informative in some contexts, false negative cases—those misclassified as high-precision 
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when they are actually low-precision—primarily lead to longer tests than necessary. This is a less 

critical error than false positives, where examinees are incorrectly judged as low-precision and the 

test is terminated prematurely. Since SC is designed to minimize the likelihood of premature 

termination, metrics that reflect the cost of false positives (i.e., PPV) are more directly aligned 

with its goals. However, NPV might be useful in settings where minimizing unnecessary test length 

is a priority, and its utility warrants further exploration. 

Last, but not least, the SC procedure was bank specific. From a practical standpoint, each item 

bank needs to be calibrated to implement the SC function, which requires time and expertise. 

 

Future Directions 

 

The study can be extended in the following directions: (1) using Bayesian methods instead of 

MLE as the   estimation method. Even though Equation 1 holds only for MLE estimators, given 

the practical nature of this project and the various approximations involved, Bayesian methods 

might yield better results at least in some respects due to its reduced variance of  estimates, and 

(2) the methods can be extended to multidimensional IRT models. In multidimensional CATs, the 

test administrator might use the desired size of the error ellipse or posterior credibility region as 

the termination criterion (Reckase, 2009). Methods can be developed to find the distribution of the 

size of the error ellipse or posterior credibility region, based on which an SC procedure can then 

be developed. 

 

Implementation Guide 

 

Given the potential of SC in reducing test length, practitioners should consider adding SC 

features to their CATs. To implement SC with a given item bank, the following steps are needed: 

1. Specify a maximum test length. Then run simulations (e.g., 1,000 times at  levels with 

low-information) of full-length CATs. Plot histograms of FSEMs at the range of true 𝜃 

values of interest and determine the appropriate termination SEMs (see Appendix D). 

2. Select an item projection method. MPWI-U is recommended with MLE  estimation due 

to its favorable performance at extreme 𝜃 values, which are usually the region of interest 

for curtailment. 

3. Specify a Type I error rate (e.g., 0.05). Implement the SC procedure once the testing 

process reaches the SC start point, which is the fifth item in the CAT as discussed in 

Method above. 
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Appendix A 
 

The Mean and Variance of Item Information 
 
 
Consider a dichotomous item under the 3-parameter logistic model (3PL). Denote 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 as 

the discrimination, difficulty and pseudo-guessing parameters, respectively; Denote 𝑝𝑖  as the 

probability of answering the item correctly (or in the keyed direction). Denote 𝑢𝑖 as the response 

to the item, so that 𝑢𝑖 = 1 when answering correctly, the probability of which is 𝑝𝑖, and 𝑢𝑖 = 0 

when answering incorrectly, the probability of which is 1 − 𝑝𝑖.  The observed information of the 

item is given by 

 

 
𝐽𝑖(𝜃|𝑢𝑖) = −

𝜕

𝜕𝜃2
𝑙𝑛𝐿𝑖(𝜃|𝑢𝑖) 

(A1) 
 

where 𝐿𝑖(𝜃) is the likelihood function for the item defined as 

 

 𝐿𝑖(𝜃|𝑢𝑖) = 𝑝𝑖
𝑢𝑖 ∙ (1 − 𝑝𝑖)

1−𝑢𝑖  (A2) 

and 

 

 
𝑝𝑖(𝜃) = 𝑐𝑖 + (1 − 𝑐𝑖)

𝑒𝑎𝑖(𝜃−𝑏𝑖) 

1 + 𝑒𝑎𝑖(𝜃−𝑏𝑖)
 (A3) 

Insert Equations A2 and A3 into Equation A1 to obtain the expression for 𝐽𝑖(𝜃|𝑢𝑖) (Bradlow, 

1996): 

 

 
𝐽𝑖(𝜃|𝑢𝑖) =

𝑒𝑡𝑖

(1 + 𝑒𝑡𝑖)2
− 𝑢𝑖𝑐𝑖

𝑒𝑡𝑖

(𝑐𝑖 + 𝑒𝑡𝑖)2
 (A4) 

 

where 𝑡𝑖 = 𝑎𝑖(𝜃 − 𝑏𝑖). 

 

Dichotomous Response Items 

 

Note that when 𝑐𝑖 = 0 , 𝐽𝑖(𝜃|𝑢𝑖) =
𝑒𝑡𝑖

(1+𝑒𝑡𝑖)2 , meaning that it is a constant with regard to 𝑢𝑖 . 

Therefore, the observed information of a 2-parameter logistic (2PL) item is always equal to its 

expected information, which is 
𝑒𝑡𝑖

(1+𝑒𝑡𝑖)2
 . This is a well-established conclusion in the literature 

(Bradlow, 1996; Samejima, 1973; Yen et al., 1991). An important implication is that the SEM 

estimation method applied in this research applies to the 3PL only, not the 2PL or one-parameter 

logistic model. Other estimation methods will be needed for these latter models. 

 In 3PL when 𝑐 ≠ 0, 𝐽𝑗(𝜃|𝑢𝑖) is a function of 𝑢𝑖. Taking the expectation with regard to 𝑢𝑖 gives 

Fisher’s expected information (Bradlow, 1996): 
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𝐸𝑢𝑖
[𝐽𝑖(𝜃|𝑢𝑖)] = 𝐸𝑢𝑖

[
𝑒𝑡𝑖

(1 + 𝑒𝑡𝑖)2
− 𝑢𝑖𝑐𝑖

𝑒𝑡𝑖

(𝑐𝑖 + 𝑒𝑡𝑖)2
] 

 
                     =

𝑒𝑡𝑖

(1 + 𝑒𝑡𝑖)2
− 𝑝𝑖𝑐𝑖

𝑒𝑡𝑖

(𝑐𝑖 + 𝑒𝑡𝑖)2
 (A5) 

Insert the expression of 𝑝𝑖 to derive the expression for I𝑖(𝜃𝑁|𝒖𝑘), 

 

 
I𝑖(𝜃𝑁|𝒖𝑘) = 𝐸𝑢𝑖

[𝐽𝑖(𝜃|𝑢𝑖)] = (
𝑒𝑡𝑗

1 + 𝑒𝑡𝑗
)

2

(
1 − 𝑐𝑗

𝑐𝑗 + 𝑒𝑡𝑗
) 

(A6) 

 

The variance of Jj(θ|ui) with regard to ui can be calculated as 

 

𝑉𝑎𝑟𝑢𝑖
[𝐽𝑖(𝜃|𝑢𝑖)] = 𝑉𝑎𝑟𝑢𝑖

[
𝑒𝑡𝑖

(1 + 𝑒𝑡𝑖)2
− 𝑢𝑖𝑐𝑖

𝑒𝑡𝑖

(𝑐𝑖 + 𝑒𝑡𝑖)2
] 

= 𝑉𝑎𝑟𝑢𝑖
[−𝑢𝑖𝑐𝑖

𝑒𝑡𝑖

(𝑐𝑖 + 𝑒𝑡𝑖)2
] 

 

                      = [−𝑐𝑗

𝑒𝑡𝑗

(𝑐𝑗 + 𝑒𝑡𝑗)
2]

2

𝑝𝑗(1 − 𝑝𝑗) (A7) 

 

Insert the expression of 𝑝𝑖 to derive: 

 

 
𝑉𝑎𝑟𝑢𝑖

[𝐽𝑖(𝜃|𝑢𝑖)] =
𝑐𝑗

2𝑒2𝑡𝑗(𝑐 + 𝑒𝑡𝑗)(1 − 𝑐)

(𝑐𝑗 + 𝑒𝑡𝑗)
4

(1 + 𝑒𝑡𝑗)2
 (A8) 

 

Polytomous Response Items 

 

There are two broad classes of polytomous IRT models: difference models and divide-by-total 

models (Magis, 2015). Difference models encompass the graded response model (GRM; Samejima, 

1968) and the modified graded response model (Muraki, 1990). Divide-by-total models 

encompasses the partial credit model (PCM; Masters, 1982), the generalized PCM (Muraki, 1990), 

the rating scale model (Andrich, 1978a, 1978b), and the nominal response model (Bock, 1972), 

among others. Importantly, observed information and Fisher’s expected information are com-

pletely equivalent under divide-by-total models, but different under difference models (Magis, 

2015). Therefore, the CLT-based estimation method works for the difference models only. The 

present research uses the GRM because it is the most commonly used difference model. 

Consider a polytomous item 𝑖. Let 𝑔𝑖 + 1 be the number of response categories. Denote 𝑋𝑖 as 

the item score, where 𝑋𝑖 ∈ {0,1, … , 𝑔𝑖}. Denote 𝑃𝑖𝑘(𝜃) = Pr (𝑋𝑖 = k|θ) as the probability of score 

𝑘  (𝑘 = 0,1, … , 𝑔𝑖)  for an examinee with ability level 𝜃 . Under the GRM, 𝑃𝑖𝑘(𝜃) = 𝑃𝑖𝑘
∗ (𝜃) −

𝑃𝑖(𝑘+1)
∗ (𝜃), where 𝑃𝑖𝑘

∗ (𝜃) is the cumulative probability of the examinee scoring 𝑘 or a score above, 
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𝑃𝑖𝑘
∗ (𝜃) = 𝑃𝑟{𝑋𝑖 ≥ k|𝜃} . Note that 𝑃𝑖𝑘

∗ (𝜃)  can be expressed using the 2PL model in the 

dichotomous case, i.e., 

 

 
𝑃𝑖𝑘

∗ (𝜃) =
𝑒𝑎𝑖(𝜃−𝑏𝑖𝑘) 

1 + 𝑒𝑎𝑖(𝜃−𝑏𝑖𝑘)
 (A9) 

where 𝑎𝑖 is the discrimination parameter for item, 𝑏𝑖𝑘 is the threshold (difficulty) parameter for 

category 𝑘. The observed information of the item can be calculated using the same procedure as 

the dichotomous case, which gives the following result (Magis, 2015): 

 

 

𝐽𝑖(𝜃) = ∑ 𝜏𝑖𝑘 [
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
]

𝑔𝑖

𝑘=0

 
(A10) 

 

where 𝜏𝑖𝑘 is the indicator being equal to 1 if 𝑋𝑖 = k and 0 otherwise. 𝑃𝑖𝑘
′ (𝜃) and 𝑃𝑖𝑘

′′ (𝜃) are the 

first and the second derivatives of 𝑃𝑖𝑘(𝜃), respectively. Take the expectation with respect to 𝜏𝑖𝑘 

to derive Fisher’s expected information (Magis, 2015): 

 

I𝑖(𝜃𝑁|𝒖𝑘) = 𝐸𝜏𝑖𝑘
[𝐽𝑖(𝜃)] = 𝐸𝜏𝑖𝑘

[∑ 𝜏𝑖𝑘 [
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
]

𝑔𝑖

𝑘=0

] 

= ∑ 𝐸[𝜏𝑖𝑘] [
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
]

𝑔𝑖

𝑘=0

 

= ∑ 𝑃𝑖𝑘(𝜃) [
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
]

𝑔𝑖

𝑘=0

 

 

                                          = ∑ [
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)
− 𝑝𝑖𝑘

′′ (𝜃)]

𝑔𝑖

𝑘=0

. (A11) 

 

It is easier to derive the variance of 𝐽𝑖(𝜃)  by applying the formula 𝑉𝑎𝑟(𝐽𝑖(𝜃)) = 𝐸[𝐽𝑖
2(𝜃)] 

−{𝐸[𝐽𝑖(𝜃)]}2, where 𝐸[𝐽𝑖(𝜃)] has been derived in the equation above. To derive 𝐸[𝐽𝑖
2(𝜃)]: 

 

𝐽𝑖
2(𝜃) = (∑ 𝜏𝑖𝑘 [

𝑝𝑖𝑘
′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
]

𝑔𝑖

𝑘=0

)

2
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= ∑ 𝜏𝑖𝑘
2

𝑔𝑖

𝑘=0

(
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
)

2

  

+ ∑ 2𝜏𝑖𝑚𝜏𝑖𝑛

𝑔𝑖

𝑚≠𝑛

(
𝑝𝑖𝑚

′ (𝜃)2

𝑝𝑖𝑚(𝜃)2
−

𝑝𝑖𝑚
′′ (𝜃)

𝑝𝑖𝑚(𝜃)
) (

𝑝𝑖𝑛
′ (𝜃)2

𝑝𝑖𝑛(𝜃)2
−

𝑝𝑖𝑛
′′ (𝜃)

𝑝𝑖𝑛(𝜃)
) 

 

(A12) 

Note that 𝜏𝑗𝑚𝜏𝑗𝑛 = 0 for 𝑚 ≠ 𝑛, because only one of the 𝑔𝑗 response categories will be endorsed 

by the examinee, i.e., takes the value of 1; All other response categories will take the value of 0. 

So 𝜏𝑗𝑚𝜏𝑗𝑛 = 1 × 0  or 0 × 0 =.  Therefore, all items involving 𝜏𝑗𝑚𝜏𝑗𝑛  are zero. In addition, note 

that 𝜏𝑗𝑘
2 = 𝜏𝑗𝑘 because 𝜏𝑗𝑘 is a binary variable. Therefore, 

𝐸[𝐽𝑖
2(𝜃)] = 𝐸 [∑ 𝜏𝑖𝑘

2

𝑔𝑖

𝑘=0

(
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
)

2

] 

= 𝐸 [∑ 𝜏𝑖𝑘

𝑔𝑖

𝑘=0

(
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
)

2

] 

= ∑ 𝐸[𝜏𝑖𝑘]

𝑖

𝑘=0

(
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
)

2

 

 

                                    = ∑ 𝑝𝑖𝑘(𝜃)

𝑔𝑖

𝑘=0

(
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)2
−

𝑝𝑖𝑘
′′ (𝜃)

𝑝𝑖𝑘(𝜃)
)

2

 (A13) 

and so, 

 

𝑉𝑎𝑟(𝐽𝑖(𝜃)) = 𝐸[𝐽𝑖
2(𝜃)] − {𝐸[𝐽𝑖(𝜃)]}2 

 

= ∑ 𝑝𝑗𝑘(𝜃)

𝑔𝑗

𝑘=0

(
𝑝𝑗𝑘

′ (𝜃)2

𝑝𝑗𝑘(𝜃)2
−

𝑝𝑗𝑘
′′ (𝜃)

𝑝𝑗𝑘(𝜃)
)

2

− (∑ [
𝑝𝑖𝑘

′ (𝜃)2

𝑝𝑖𝑘(𝜃)
− 𝑝𝑖𝑘

′′ (𝜃)]

𝑔𝑖

𝑘=0

)

2

 (A14) 
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Appendix B 

The Empirical Mean and Variance  

of the Observed Information of a Test 

 

The empirical mean of the observed information can be expressed as 

 

𝐸[𝐽(𝜃𝑁|𝒖𝑘)]  = 𝐸 [∑ 𝐽𝑖(𝜃𝑁|𝒖𝑘)

𝑘

𝑖=1

+ ∑ 𝐽𝑖(𝜃𝑁|𝒖𝑘)

𝑁

𝑖=𝑘+1

] 

 

                              = ∑ 𝐽𝑖(𝜃𝑁|𝒖𝑘)

𝑘

𝑖=1

+ ∑ 𝐼𝑖(𝜃𝑁|𝒖𝑘)

𝑁

𝑖=𝑘+1

, (B1) 

 

where 𝐽𝑖(𝜃𝑁|𝒖𝑘), 𝑖 = 1,2, … , 𝑘 denotes the information of an administered item evaluated at 𝜃𝑁, 

and 𝐼𝑖(𝜃𝑁|𝒖𝑘) =  𝐸𝑢𝑖
[𝐽𝑖(𝜃𝑁|𝒖𝑘)], 𝑖 = 𝑘 + 1, 𝑘 + 2, … , 𝑁  denotes Fisher’s expected information 

of an item yet to be administered evaluated at 𝜃𝑁 . Note that Fisher’s expected information of an 

item is the expected value of the observed information of the item, treating the item response 𝑢𝑖 

as a random variable. Since the first 𝑘  items have been administered, their response pattern is 

known, so their observed information is a known constant, and the expectation of a constant is the 

constant itself. The remaining 𝑁 − 𝑘 items are not administered yet, so their response patterns as 

well as their item parameters are unknown, and their observed information is also unknown. Taking 

the expectation of the observed information of these items with respect to their responses gives 

their Fisher expected information (van der Linden & Glas, 2010). Equation 3 says that the 

empirical mean of the observed information of the test equals the total observed information of the 

first 𝑘 items and the total Fisher’s expected information of the remaining 𝑁 − 𝑘 items.  

The empirical variance of the observed information of the test can be expressed as 

 

𝑉𝑎𝑟[𝐽(𝜃𝑁|𝒖𝑘)] = 𝑉𝑎𝑟 [∑ 𝐽𝑖(𝜃𝑁|𝒖𝑘)

𝑘

𝑖=1

+ ∑ 𝐽𝑖(𝜃𝑁|𝒖𝑘)

𝑁

𝑖=𝑘+1

] 

= 𝑉𝑎𝑟 [ ∑ 𝐽𝑖(𝜃𝑁|𝒖𝑘)

𝑁

𝑖=𝑘+1

]   (because ∑ 𝐽𝑖(𝜃𝑁|𝒖𝑘)

𝑘

𝑖=1

 is a constant) 

= ∑ 𝑉𝑎𝑟[𝐽𝑖(𝜃𝑁|𝒖𝑘)]

𝑁

𝑖=𝑘+1

 (assuming local independence) 

= ∑ {𝐸[𝐽𝑖
2(𝜃𝑁|𝒖𝑘)] − {𝐸[𝐽𝑖(𝜃𝑁|𝒖𝑘)]}

2
}

𝑁

𝑖=𝑘+1

 (by the definition of variance) 
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                             = ∑ {𝐸[𝐽𝑖
2(𝜃𝑁|𝒖𝑘)] − [𝐼𝑖(𝜃𝑁|𝒖𝑘)]

2
}

𝑁

𝑖=𝑘+1

 . (B2) 

 

Equation B.2 states that the empirical variance of the information of the test equals the sum of 

the individual variances of the information of the remaining 𝑁 − 𝑘 items. The information of the 

administered 𝑘 items has no variance because it is a constant. 

There are two sets of unknowns in Equations B1 and B2: 𝐼𝑖(𝜃𝑁|𝒖𝑘) and 𝐸[𝐽𝑖
2(𝜃𝑁|𝒖𝑘)] for 𝑖 =

𝑘 + 1, 𝑘 + 2, … , 𝑁. There are two obstacles to estimating them: First, after 𝑘 administered items, 

the remaining 𝑁 − 𝑘 items are unknown, so an item projection method is needed to select 𝑁 − 𝑘 

items from the item bank; second, 𝜃𝑁 is unknown, so it needs to be estimated. There are three 

approaches to resolve these issues( see Appendix C).  
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Appendix C 

Item Projection Methods 

 

Approach 1: Maximum information. This is the most straightforward approach. 𝜃𝑁  is 

estimated using 𝜃𝑘, which is the trait level estimate after 𝑘 administered items. Then, the 𝑁 − 𝑘 

most informative items evaluated at 𝜃𝑘  from the unused items in the bank are selected. Their 

information is computed as follows:  

 

 𝐼𝑖(𝜃𝑁|𝒖𝑘) = 𝐼𝑖(𝜃𝑘) (C1) 

 𝐸[𝐽𝑖
2(𝜃𝑁|𝒖𝑘)] = 𝐸[𝐽𝑖

2(𝜃𝑘)] . (C2) 

 

where 𝑖 ∈ {𝑎𝑙𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑏𝑎𝑛𝑘}. 

Approach 2: Maximum posterior-weighted information with uniform prior. An apparent 

limitation of the previous approach is that 𝜃𝑘 is used as a point estimate of 𝜃, which does not 

consider the uncertainty in estimation. This can be improved by using posterior-weighted infor-

mation, which obviates the need for a point estimate of 𝜃: 

 

 

𝐼𝑖(𝜃𝑁|𝒖𝑘) = ∫ 𝑔(𝜃|𝒖𝑘)𝐼𝑖(𝜃) 𝑑𝜃

+∞

−∞

 (C3) 

 

𝐸[𝐽𝑖
2(𝜃𝑁|𝒖𝑘)] = ∫ 𝑔(𝜃|𝒖𝑘)𝐸[𝐽𝑖

2(𝜃)] 𝑑𝜃

+∞

−∞

 (C4) 

 

where 𝑔(𝜃|𝒖𝑘)  is the posterior distribution of 𝜃  after administering 𝑘  items. By the Bayes 

theorem, 

 

 
𝑔(𝜃|𝒖𝑘) =

𝐿(𝜃|𝒖𝑘)𝑔(𝜃)

∫ 𝐿(𝜃|𝒖𝑘)𝑔(𝜃)𝑑𝜃
+∞

−∞

 (C5) 

 

where 𝐿(𝜃|𝒖𝑘) is the likelihood function of 𝜃 given 𝒖𝑘, 𝑔(𝜃) is the prior distribution of 𝜃. The 

𝑁 − 𝑘 items with the largest posterior-weighted information will be selected. 

Two commonly used prior distributions were considered: the uniform distribution and the 

normal distribution. The uniform distribution places an equal weight across the regions of 𝜃 , 

whereas the normal distribution places the most weight at the center of the region and a decreasing 

amount of weight as 𝜃 deviates from the center. As a result, relatively speaking, using a uniform 

distribution is conducive to estimating examinees with extreme 𝜃  values, and using a normal 

distribution is conducive to estimating examinees with true 𝜃  values around the center of the 

distribution.  
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Approach 2 used a uniform distribution. Assume that 𝑔(𝜃) =
1

𝑝−𝑞
, 𝜃 ∈ [𝑝, 𝑞], i.e., 𝜃 follows a 

uniform distribution. Insert 𝑔(𝜃) into Equation C5: 
 

𝑔(𝜃|𝒖𝑘) =
𝐿(𝜃|𝒖𝑘)

1
𝑝 − 𝑞

∫ 𝐿(𝜃|𝒖𝑘)
1

𝑝 − 𝑞 𝑑𝜃
=

𝐿(𝜃|𝒖𝑘)

∫ 𝐿(𝜃|𝒖𝑘)𝑑𝜃
𝑝

𝑞

 . (C6) 

I 

Insert Equation C6 into Equation C3: 

 

𝐼𝑖(𝜃𝑁|𝒖𝑘) = ∫
𝐿(𝜃|𝒖𝑘)

∫ 𝐿(𝜃|𝒖𝑘)𝑑𝜃
𝑝

𝑞

𝐼𝑖(𝜃) 𝑑𝜃 =
∫ 𝐿(𝜃|𝒖𝑘)𝐼𝑖(𝜃)𝑑𝜃

𝑝

𝑞

∫ 𝐿(𝜃|𝒖𝑘)𝑑𝜃
𝑝

𝑞

 .
𝑝

𝑞

 (C7) 

 

Insert Equation C7 into Equation C4: 

 

𝐸[𝐽𝑖
2(𝜃𝑁|𝒖𝑘)] = ∫ 𝑔(𝜃|𝒖𝑘)𝐸[𝐽𝑖

2(𝜃)] 𝑑𝜃

+∞

−∞

= ∫
𝐿(𝜃|𝒖𝑘)

∫ 𝐿(𝜃|𝒖𝑘)𝑑𝜃
𝑝

𝑞

𝐸[𝐽𝑖
2(𝜃)]𝑑𝜃 

𝑝

𝑞

 

                                        =
∫ 𝐿(𝜃|𝒖𝑘)𝐸[𝐽𝑖

2(𝜃)]𝑑𝜃
𝑝

𝑞
 

∫ 𝐿(𝜃|𝒖𝑘)𝑑𝜃
𝑝

𝑞

 . (C8) 

 

In the simulations, set 𝑝 = −4 and 𝑞 = 4. This was the range used in the 𝜃 estimation algorithm 

in this study.  

Approach 3: Maximum posterior-weighted information with a normal prior. Assume that 

𝑔(𝜃) =
1

√2𝜋
(−

𝜃2

2
), 𝜃 ∈ (−∞, +∞), i.e., 𝜃 follows a standard normal distribution. Insert 𝑔(𝜃) into 

Equation C5: 

 
 

𝑔(𝜃|𝒖𝑘) =

𝐿(𝜃|𝒖𝑘)
1

√2𝜋
𝑒𝑥𝑝(−

𝜃2

2 )

∫ 𝐿(𝜃|𝒖𝑘)
1

√2𝜋
𝑒𝑥𝑝(−

𝜃2

2 )𝑑𝜃
=

𝐿(𝜃|𝒖𝑘)𝑒𝑥𝑝(−
𝜃2

2 )

∫ 𝐿(𝜃|𝒖𝑘)𝑒𝑥𝑝(−
𝜃2

2 )𝑑𝜃
+∞

−∞

 . (C9) 

 

Insert Equation C9 into Equation C3: 

 

 

𝐼𝑖(𝜃𝑁|𝒖𝑘) = ∫
𝐿(𝜃|𝒖𝑘)𝑒𝑥𝑝(−

𝜃2

2 )

∫ 𝐿(𝜃|𝒖𝑘)𝑒𝑥𝑝(−
𝜃2

2 )𝑑𝜃
+∞

−∞

𝐼𝑖(𝜃) 𝑑𝜃                               
+∞

−∞

=
∫ 𝐿(𝜃|𝒖𝑘)𝐼𝑖(𝜃)𝑒𝑥𝑝(−

𝜃2

2 )𝑑𝜃
+∞

−∞

∫ 𝐿(𝜃|𝒖𝑘)𝑒𝑥𝑝(−
𝜃2

2 )𝑑𝜃
+∞

−∞

 . 

 

 

(C10) 

 

Insert Equation C10 into Equation C4: 
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The calculations of 𝐼𝑖(𝜃) and 𝐸[𝐽𝑖
2(𝜃)] for a 3PL dichotomous response model and a 

polytomous response model are presented in Appendix B. 
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Appendix D 

 

Determining the 𝑵 and 𝝉 for Each Item Bank 
 

 

The method of determining the N and τ for each item bank was as follows. For each item bank, 

full-length CATs were replicated 1,000 times at each of the true 𝜃 levels specified. Three values 

of 𝑁, which were 20, 30, and 40 were investigated for each dichotomous bank. Three values of 𝑁, 

which were 15, 20, and 25, were investigated for the polytomous bank. Figures E1–E3 display the 

histograms of the FSEMs for each item bank under each 𝑁 and each 𝜃 level from the simulations. 

To create scenarios in which low-precision cases occurred due to insufficient test information at 

extreme 𝜃 levels, the appropriate 𝜏 for a given test length should be selected so that the majority 

of the replications at and around the center of the 𝜃 continuum were below 𝜏 (i.e., high-precision 

cases), while the majority of the replications at and around the extremes of the 𝜃 continuum were 

above 𝜏 (i.e., low-precision cases). Based on this principle, the 𝜏s were selected by observing the 

histograms in Figures E1–E3. 
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Appendix E 

 

Supplementary Figures 
 

Figure E1. Histograms of FSEMs by maximum test length (by column) 

 and by θ (by row) under the high-information dichotomous item bank 



Journal of Computerized Adaptive Testing 

Ming Him Tai, Joseph N. DeWeese, David J. Weiss 
Stochastic Curtailment: Improving Efficiency of Variable-Length CATs 

 

210|  JCAT Vol. 12 No 4  August 2025 

 

Figure E2. Histograms of FSEMs by maximum test length (by column)  

and by θ (by row) under the low-information dichotomous item bank 
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Figure E3. Histograms of FSEMs by maximum test length (by column)  

and by θ (by row) under the low-information polytomous bank 
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Figure E4. MAE of the FSEM estimation procedure under the high-information dichotomous bank 

(a) 20 Items 

 

(b) 30 Items 

 

(c) 40 Items 
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Figure E5. MAE of the FSEM estimation procedure under the low-information dichotomous bank 

(a) 20 Items 

 
(b) 30 Items 

 
(c) 40 Items 
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Figure E6. MAE of the FSEM estimation procedure under the low-information polytomous bank 

(a) 15 Items 

 
(b) 20 Items 

 
(c) 25 Items 
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Figure E7. MB of the FSEM estimation procedure under the high-information dichotomous bank 

(a) 20 Items 

 
(b) 30 Items 

 
(c) 40 Items 
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Figure E8. MB of the FSEM estimation procedure under the low-information dichotomous bank 

(a) 20 Items 

 
(b) 30 Items 

 
(c) 40 Items 
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Figure E9. MB of the FSEM estimation procedure under the low-information polytomous bank 

(a) 15 Items 

 
(b) 20 Items 

 
(c) 25 Items 
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Figure E10. Positive predictive values of the SC procedure under the high-information dichotomous banks 

    (a) 20 Items                                                 (b) 30 Items                                                   (c) 40 Items 
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Figure E11. Positive predictive values of the SC procedure under the low-information dichotomous banks 

 (a) 20 Items                                               (b) 30 Items                                              (c) 40 Items 
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Figure E12. PPVs of the SC procedure under the low-information polytomous bank 

    (a) 15 Items                                         (b) 20 Items                                            (c) 25 Items 
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Figure E13. True positive rates of the SC procedure under the high-information dichotomous banks 

  (a) 20 Items                                          (b) 30 Items                                           (c) 40 Items 
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Figure E14. True positive rates of the SC procedure under the low-information dichotomous banks 

             (a) 20 Items                                               (b) 30 Items                                            (c) 40 Items 
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Figure E15. True positive rates of the stochastic curtailment procedure under the low-information polytomous bank 

            (a) 15 Items                                              (b) 20 Items                                            (c) 25 Items 
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Figure E16. False positive rates of the SC procedure under the high-information dichotomous banks 

             (a) 20 Items                                                (b) 30 Items                                             (c) 40 Items 
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Figure E17. False positive rates of the SC procedure under the low-information dichotomous banks 

             (a) 20 Items                                              (b) 30 Items                                             (c) 40 Items 
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Figure E18. False positive rates of the SC procedure under the low-information polytomous bank 

              (a) 15 Items                                          (b) 20 Items                                            (c) 25 Items 
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Appendix F 
 

Supplementary Tables 
 

Table F1. Reduction in average test length under the high-information dichotomous bank 

Item bank 

and test 

length 

𝜃 = −2 𝜃 = 2 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

HI, 20 items 1.9 54.5 89.0 1.9 54.4 86.6 

HI, 30 items 18.8 62.7 92.4 17.0 56.7 87.0 

HI, 40 items 28.7 71.7 96.8 26.8 66.9 88.6 

 
 

Table F2. Reduction in average test length under the low-information dichotomous bank 

Item bank 

and test 

length 

𝜃 = −2 𝜃 = 2 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

Reduction 

in ATL 

Reduction 

in ATL (%) 

% simulees 

SCed 

LI, 20 items 13.5 67.3 97.8 13.4 67.1 98.0 

LI, 30 items 21.9 73.0 98.0 2.3 67.6 95.2 

LI, 40 items 32.7 81.7 99.6 29.6 73.9 96.4 

 
 

Table F3. Reduction in average test length under the low-information polytomous bank 

Item bank 

and test 

length 

𝜃 = −4 𝜃 = 0 

Reduction 

in ATL 

Reduction 

in ATL 

% simulees 

SCed 

Reduction 

in ATL 

Reduction 

in ATL 

% simulees 

SCed 

LI, 15 items 9.8 65.3% 99.6% 9.1 6.7% 98.2% 

LI, 20 items 12.8 64.0% 99.6% 11.5 57.7% 96.6% 

LI, 25 items 17.6 7.4% 98.8% 16.6 66.4% 99.0% 

 

Item bank 

and test 

length 

𝜃 = 1 𝜃 = 2 

Reduction 

in ATL 

Reduction 

in ATL 

% simulees 

SCed 

Reduction 

in ATL 

Reduction 

in ATL 

% simulees 

SCed 

LI, 15 items 9.8 65.5% 99.8% 1.0 66.6% 10.0% 

LI, 20 items 12.9 64.7% 10.0% 13.0 65.0% 10.0% 

LI, 25 items 17.9 71.6% 10.0% 18.0 72.0% 10.0% 
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Appendix G 

 
Supplementary Analyses Under Balanced Conditions 

 
To address concerns regarding the influence of class imbalance on model performance metrics, 

supplementary analyses were conducted using conditions that spanned the full θ continuum, with 

particular focus on more balanced scenarios. Specifically, the SC procedure’s performance was 

evaluated across all θ values (−2, −1, 0, 1, 2) for the 20-item dichotomous banks under both low- 

and high-information conditions. This allowed evaluation of the stability and validity of perfor-

mance indicators such as positive predictive value (PPV), true positive rate (TPR), and false 

positive rate (FPR) beyond the extreme θ cases emphasized in the main analysis. 

 

Class Imbalance and PPVs 

 

Class imbalance refers to the predominance of one case type, whether low-precision or high-

precision, within the population. As discussed in the main text, PPV was positively correlated with 

the base rate of low-precision (positive) cases. In extreme θ conditions, the proportion of low-

precision cases was naturally high, which inflated PPV estimates. In contrast, at more central θ 

levels, the base rate of low-precision cases declined sharply, reducing the potential ceiling for PPV. 

In both scenarios, PPVs rose steadily throughout the test, starting at moderate levels (approx-

imately 40% and 60%, respectively, using MPWI-U as an example) and surpassing 80% by the 

10th item (Figures G1 and G7). These results suggested that even under reduced base rates (Figures 

G2 and G8), SC-based forecasts remained informative, demonstrating “genuine” model perfor-

mance rather than purely reflecting class imbalance. 

 

TPRs and FPRs 

 

At θ = −1, the TPRs and FPRs provided additional insight into model utility under more 

balanced conditions. The base rate of low-precision cases at this θ level was 30% in the high-

information bank and 50% in the low-information bank (Figures G4 and G10). For TPRs, MPWI-

U consistently outperformed the other methods, achieving detection rates between 55% and 85% 

in both banks as the test progressed (Figures G3 and G9). This indicated that the method correctly 

identified a substantial proportion of low-precision cases even when they were not highly prevalent. 

The other two projection-based methods performed less reliably but showed improvement as the 

test proceeded. 

FPRs followed a complementary pattern. At θ = −1, the base rates of negative (high-precision) 

cases were 70% in the high-information bank and 50% in the low-information bank (Figures G6 

and G11). MPWI-U exhibited relatively high FPRs early in the test (approximately 40–50%) but 

rapidly declined to below 5% after administering 10–12 items (Figures G5 and G12). The other 

methods started at lower FPRs (~10%) and also dropped below 5% quickly. These findings 
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suggested that the SC procedure—particularly MPWI-U—balanced TPRs and FPRs more effect-

tively as the test accumulated information, even in moderately imbalanced settings. 

 

Summary 

 

These supplementary findings supported the robustness of the SC procedure under more 

balanced testing conditions and confirmed that its performance was not solely driven by class 

imbalance. While class prevalence undoubtedly influenced metrics like PPV and TPR, the 

observed patterns—especially the convergence to high PPV and low FPR after a moderate number 

of items—indicated meaningful classification utility. Further work could explore the interaction 

between item bank characteristics,   distributions, and base rates to optimize SC implementation 

across diverse CAT contexts. 
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Figure G1. PPVs of the SC procedure  

for the 20-item high-information dichotomous bank 

 

 
 

Figure G2. Composition of SC’s positive alarms by true positives  

and false positives for the 20-item high-information dichotomous bank  
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Figure G3. TPRs of the SC procedure for the  

20-item high-information dichotomous bank 

 
 

Figure G4. Composition of population positive cases by true positives  

and false negatives for the 20-item low-information dichotomous bank 
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Figure G5. FPRs of the SC procedure  

for the20-item high-information dichotomous bank 

Figure G6. Composition of population negative cases by false positives (FP)  

and true negatives (TN) for the 20-item high-information dichotomous bank 
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Figure G7. PPVs of the SC procedure  

for the 20-item low-information dichotomous bank 

 

 

 

 

 

Figure G8. Composition of SC’s positive alarms by true positives (TP)  

and false positives (FP) for the 20-item low-information dichotomous bank 
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Figure G9. TPRs of the SC procedure  

for the 20-item low-information dichotomous bank 

 

Figure G10. Composition of population positive cases by true positives (TP)  

and false negatives (FN) for the 20-item low-information dichotomous bank 
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Figure G11. FPRs of the SC procedure  

for the 20-item low-information dichotomous bank 

 

 
Figure G12. Composition of population negative cases by false positives (FP) 

and true negatives (TN) for the 20-item low-information dichotomous bank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


